THE AUTOMORPHISM TOWER OF A CENTERLESS GROUP MOSTLY WITHOUT CHOICE
19 pages
English

THE AUTOMORPHISM TOWER OF A CENTERLESS GROUP MOSTLY WITHOUT CHOICE

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
19 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Niveau: Supérieur, Master
ar X iv :m at h. LO /0 60 62 16 v 1 9 Ju n 20 06 THE AUTOMORPHISM TOWER OF A CENTERLESS GROUP (MOSTLY) WITHOUT CHOICE ITAY KAPLAN AND SAHARON SHELAH Abstract. For a centerless group G, we can define its automorphism tower. We define G?: G0 = G, G?+1 = Aut (G?) and for limit ordinals G? = ??

  • group

  • ?g

  • zf ? ?a

  • without choice

  • smallest ordinal

  • power ≤

  • ?a

  • given any centerless


Sujets

Informations

Publié par
Nombre de lectures 17
Langue English

Extrait

THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICEITAYKAPLANANDSAHARONSHELAHAbstract.ForacenterlessgroupG,wecandefineitsautomorphismtower.WedefineGα:G0=G,Gα+1=Aut(Gα)andforlimitordinalsGδ=α<δGα.LetτGbetheSordinalwhenthesequencestabilizes.Thomas’celebratedtheoremsaysτG<2|G|+and.eromIfweconsiderThomas’prooftoosettheoretical,wehavehereashorterproofwithlittlesettheory.However,settheoreticallywegetaparalleltheoremwithouttheaxiomofchoice.WeattachtoeveryelementinGα,theα-thmemberoftheautomorphismtowerofG,auniquequantifierfreetypeoverG(whishisasetofwordsfromG∗hxi).Thissituationisgeneralizedbydefining“(G,A)isaspecialpair”.1.Introductionbackground.GivenanycenterlessgroupG,wecanembedGintoitsautomorphismgroupAut(G).SinceAut(G)isalsowithoutcenter,wecandothisagain,andagain.ThuswecandefineanincreasingcontinuousserieshGα|αordi-Theautomorphismtower.Thenaturalquestionthatrises,iswhetherthisprocessstops,andwhen.WedefineτG=min{α|Gα+1=Gα}.In1939(see[3])WeilantprovedthatforfiniteG,τGisfinite.Butthereexistexamplesofcenterlessinfinitegroupssuchthatthisprocessdoesnotstopinanyfinitestage.Forexample-theinfinitedihedralgroupD=hx,y|x2=y2=1isatisfiesAut(D)=D.Sothequestionremainedopenuntil1984,whenSimonThomas’celebratedwork(see[4])provedthatτG2|G|+.Helater(see[2])improvedthistoτG<2|G|+.ThesecondauthorwouldliketothanktheUnitedStates-IsraelBinationalScienceFoundationforpartialsupportofthisresearch.Publication882.1
THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICE2ForacardinalκwedefineτκasthesmallestordinalsuchthatτκGforallcenterlessgroupsGofcardinalityκ.AsanimmediateconclusionfromThomas’theoremwehaveτκ<(2κ)+.WealsodefinethenormalizertowerofH-asubgroupofagroupG-inG:hnorGα(H)|αordibynor0G(H)=H,norGα+1(H)=nor(norGα(H))andnorδG(H)={norGα(H)|α<δ}forδlimit.LetS1+α τG,H=minα norG(H)=norGα(H).Thisconstructionturnsouttobeveryuseful,thankstothefollowing:Foracardinalκ,letτκnlgbethesmallestordinalsuchthatτκnlgAut(A),H,foreverystruc-tureofcardinalityκandHAut(A)ofcardinalityκ.In[1],Just,ShelahandThomas,foundaconnectionbetweentheseordinals:τκτκnlg.Inthispaperwedealwithanupperboundofτκ,butthereareconclusionregardinglowerboundsaswell,andtheinequalityaboveisusedtoprovetheexistenceofsuchlowerboundsbyfindingstructureswithlongnormalizertowers.In[4],Thomasprovedthatτκκ+,andin[1]theauthorsfoundthatonecannotproveinZFCabetterexplicitupperboundforτκthen(2κ)+(usingsettheoreticforcing).In[5],Shelahprovedthatifκisstronglimitsingularofuncountablecofinalitythenτκ>2κ(usingresultsfromPCFtheory).ItremainsanopenquestionwhetherornotthereexistsacountablecenterlessgroupGsuchthatτGω1.Inasubsequentpaperweplantoprovethatτκnlgτκistrueevenwithoutchoice.Results.Ourmaintheorem:(ofcourse,Thomas’didnotneedtodistinguishGandω>G)Theorem1.1.(ZF)τ|G|P(ω>G)foracenterlessgroupG.Thatis,thereisanordinalαandafunctionfromω>GontoitsuchthatτG.Moreover,τGforeverycenterlessgroupGsuchthat|G|≤|G|.Thisisanessentiallytheorem3.16.WedealwithfindingτGwithoutchoice,anddiscoverthatThomas’theoremstillholds.WeprovethatgivenacertainalgebraicpropertyofGandasubsetA((G,A)isspecial
THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICE3-seedefinition3.6)wecanreducethebound.Alongthewaywegiveadifferentproofofthetheoremwithoutchoiceinconclusion3.14(ThomasusedFodor’slemmainhisproofasyoucanseeinsection5,anditisknownthatitsnegationisconsistentwithZF).ThenweconcludethatifVisasubclassofVwhichisamodelofZFsuchthatP(κ)V,thenτκP(κ)foreveryκandsoτ0R.(seeconclusion3.19)VL[R]Moreover,wegiveadescriptivesettheoreticapproachtofindingτ0insection4.Finally,wereturntotheaxiomofchoice,toseethatwecanimprovetheboundforcertaingroupsthatholdaweakeralgebraicproperty((G,A)isweaklyspecial-seedefinition5.4).Anoteaboutreadingthispaper.Howshouldyoureadthispaperifyouarenotinter-estedintheaxiomofchoicebutonlyonthenewandsimpleproofofThomas’Theorem?Youcanreadonlysection3,andinthere,you:Startwithdefinition3.6.Continuetoclaim3.8,whichisverysimple.Thenconclusion3.10isasimpleapplicationofthatlemma.Claim3.12Isaveryimportantsteptowards3.13,andthenfinallyconclusion3.14wrapsitup.Notation1.2.(1)ForagroupG,itsidentityelement,willbedenotedase=eG.(2)ifAGthenhAiGisthesubgroupgeneratedbyAinG.Similarly,ifxG,hA,xiGisthesubgroupgeneratedbyA∪{x}.(3)Thelanguageofastructureisitsvocabulary.(4)Vwilldenotetheuniverseofsets;Vwilldenoteatransitiveclasswhichisamodel.FZfo2.TheNormalizerTowerWithoutChoiceDefinition2.1.(1)ForagroupGandasubgroupHG,wedefinenorGα(H)foreveryordinalnumber:ybαnor0G(H)=H.norαG+1(H)=norG(norGα(H)).
THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICE4norδG(H)={norGα(H)|α<δ},forδlimit.S (2)WedefineτGn,lgH=τG,H=minα norGα+1(H)=norGα(H).(3)Forasetk,wedefineτ|nkl|gasthesmallestordinalα,suchthatforeverystructureAofpowerkAk≤|k|,τAut(A),HforeverysubgroupHAut(A)=Gofpower|H|≤|k|.Notethatτ|nkl|g=sup{τG,H+1|forsuchGandH}.(4)Foracardinalnumberκ,defineτκnlgsimilarly.Remark2.2.Notethatτ|nkl|giswelldefined(inZF)sincewecanrestrictourselvestostruc-tureswithlanguagesofpowern<ω|k|nanduniversecontainedink.SeeobservationP.3.2Observation2.3.(1)(ZF)ForanystructureAwhoseuniverseis|A|=AthereisastructureBsuch:tahtA,Bhavethesameuniverse(i.e.A=|B|).A,Bhavethesameautomorphismgroup(i.e.Aut(A)=Aut(B)).thelanguageofBisoftheformLB={Ra¯|a¯ω>A}whereeachRa¯isalg(a¯)placerelation.(2)(ZFC)IfAisinfinitethenthelanguageofBhascardinalityatmost|A|.Proof.DefineBasfollows:itsuniverseis|A|.ItslanguageisL={Ra¯|a¯nA,n<ω}whereRa¯B=o(a¯),whichisdefinedbyo(a¯)={f(a¯)|fAut(A)}-theorbitofa¯underAut(A).Definition2.4.ForasetA,wedefineθA=θ(A)tobethefirstordinalα>0suchthatthereisnofunctionfromAontoα.Remark2.5.(1)ZFCθA=|A|+(2)ZFθAisacardinalnumber,andifAisinfinite(i.e.thereisaninjectionfromωintoA)thenθA>0.
THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICE5(3)Usually,weshallconsiderθAVwhereVisatransitivesubclassofVwhichisamodelofZF.Claim2.6.(ZF)IfGisagroup,HGasubgroupthenτG,HG.Proof.IfτG,H=0itisclear.ifnot,deneF:GτG,HbyF(g)=αiffgnorGα+1(H)\norGα(H),andifthereisnosuchα,F(g)=0.BydefinitionofτG,H,Fisonto.Fromthedefinitionofθ,τG,HG.Wecandoevenmore:Claim2.7.(ZF)τ|nkl|gP(ω>k).Proof.LetBk={(A,f,x) Aisastructure,LAω>k,|A|⊆k,f:kkk,xG=Aut(A)andHG,H=image(f)}LetF:Bkτ|nkl|gbethefollowingmap:F(A,f,x)=αiffxnorGα+1(H)\norGα(H),andifthereisnosuchα,F(G,H,x)=0(whereG=Aut(A),andH=image(f)).SinceFisontoτ|nkl|g,itsenoughtoshowthatthereisaonetoonefunctionfromBktoP(ω>k).ButxG,hencexk×kandfkkkk×k×k,andAisaseriesofsubsetsofω>k,i.e.>ωafunctioninkP(ω>k)ω>k×P(ω>k),andwecanencodesuchafunctionasamemberofP(ω>k).(How?defineaninjectivefunctionf1:ω>k×ω>kω>k,usingthedefinableinjectivefunctioncd:ω×ωω.Then,definetheencodingf2:ω>k×P(ω>k)→P(ω>k)usingf1).Henceitisclear.Claim2.8.AssumethatVisatransitivesubclassofVwhichisamodelofZF,GVagroup,HVasubgroupthenτGV,H=τGV,HGV.Proof.Byclaim2.6,itremainstoshowthatτGV,H=τGV,H.ByinductiononαV,onecanseethat(norGα(H))V=(norGα(H))V(theformulathatsaysthatxisinnorG(H)isboundedintheparametersGandH).
THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICE6Itisalsotruethatτ|nkl|gispreservedinV,foreverykV,suchthatP(ω>k)V:Claim2.9.AssumethatVisatransitivesubclassofVwhichisamodelofZF.VV(1)IfP(ω>k)Vthenτ|nkl|g=τ|nkl|gPV(ω>k).(2)Ifk=κacardinalnumberandP(κ)Vthenτκnlg=τκnlgPV(κ)VVProof.(2)followsfrom(1),aswehaveanabsolutedefinablebijectioncd:ω>κκ.ForasetkV,suchthatP(ω>k)VletAk={(G,H)|ThereisastructureA,with|A|⊆k,suchthatG=Aut(A)andHG,|H|≤|k|}Itisenoughtoprovethat(Ak)V=(Ak)V,becausebydefinitionnlgV[nVoτ|k|=τG,H+1 (G,H)(Ak)on[=τG,H+1 (G,H)(Ak)VnlgV=τ|k|PV(ω>k)Soletusprovetheaboveequality:(Ak)V(Ak)V,sinceif(G,H)(Ak)VandAVastructuresuchthatG=Aut(A)thenAVand(Aut(A))V=(Aut(A))V,because(Aut(A))Vkk⊆P(k×k)V.So(G,H)(Ak)V,aswitnessedbythesamestructure.VOntheotherhand,suppose(G,H)(Ak).SoletAbeastructureonksuchthatG=Aut(A).Byobservation2.3,wemayassumethatLA={Ra¯|a¯ω>k},andeachRa¯isalg(a¯)placerelation(Thisisnotnecessary,itjustmakesitmoreconvenient).Define XA=a¯ˆb¯ lg(a¯)=lgb¯b¯Ra¯A.Observethat:XAV,asXAω>k.AcanbedefinedusingXA:itsuniverseisk,andforeacha¯ω>k,Ra¯= b¯ lgb¯=lg(a¯)a¯ˆb¯XA.
THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICE7Soinconclusion,AV,andsoGVasbefore.InadditionHV,becauseHistheimageofafunctioninkkk,andkkk⊆P(k×k×k)V.BydefinitionV(G,H)(Ak)andwearedone.3.TheAutomorphismTowerWithoutChoiceDefinition3.1.ForacenterlessgroupG,wedefinetheserieshGα|αordi:G0=G.Gα+1=Aut(Gα)Gδ=∪{Gα|α<δ}forδlimit.Remark3.2.SinceGiscenterless,thismakessense-G=Inn(G)Aut(G),andAut(G)isagainwithoutcenter.SoweidentifyGwithInn(G),andsoGαGα+1.Thisseriesisthereforemonotoneandcontinuous.Definition3.3.(1)DefineanordinalτGbyτG=min{α|Gα+1=Gα}.WeshallshowbelowthatτGiswelldefined.(2)Forasetk,wedefineτ|k|tobethesmallestordinalαsuchthatα>τGforallgroupsGwithpower≤|k|.(3)Foracardinalnumberκ,defineτκsimilarly.Definition3.4.ForagroupG(notnecessarilycenterless)andasubsetA,wedefineanequivalencerelationEG,AbyxEG,Ayifftpqf(x,A,G)=tpqf(y,A,G)wheretpqf(x,A,G)={σ(z,a¯)|a¯nA,n<ω,σaterminthelanguageofgroups(i.e.aword)withparametersfromA,zisit’sonlyfreevariableandG|=σ(x,a¯)=e}Remark3.5.
THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICE8(1)NotethatxEG,AyiffthereisanisomorphismbetweenhA,xiGandhA,yiGtakingxtoyandfixingA.(2)TherelationEG,Aisdefinableandabsolute(sincetpqf(x,A,G)isabsolute-theformuladefiningitisbounded).Definition3.6.Wesay(G,A)isaspecialpairifAG,GisagroupandEG,A={(x,x)|xG}(i.e.theequality).Example3.7.(1)IfG=hAiGthen(G,A)isspecial.(2)IfGiscenterlessthen(Aut(G),G)isspecial(seeclaim3.8),soingeneral,theconverseof(1)isnottrue.(3)ThereisagroupGwithcentersuchthat(Aut(G),Inn(G))isspecial,e.g.Z/2Z,tub(4)IfGisnotcenterlessthen(2)isnotnecessarilytrue,evenifthe|Z(G)|=2:Itisenoughtofindagroupwhichsatisfiestheseproperties:(a)Z(G)={a,e}wherea6=e.(b)HiGfori=1,2aretwodifferentsubgroupsofindex2.(c)Z(G)=Z(Hi)fori=1,2Letπbethehomomorphismπ:GAut(G)takinggtoig(ig(x)=gxg1).Theninn(G)=image(π).Wewishtofindx16=x2Aut(G)withx1Einn(G),Aut(G)x2.agg/HSodefinexi(g)=i.Sincexi2=id,xiπ(g)xi1=π(xi(g))=π(g)ggHiandthefactthatxi/Inn(G)(becauseZ(G)=Z(Hi))itfollowsthattpqf(x1,Inn(G),Aut(G))=tpqf(x2,Inn(G),Aut(G)).Nowwehavetocon-structsuchagroup.Noticethatitisenoughtofindacenterlessgroupsatisfyingonlythelasttwoproperties,sincewecantakeit’sproductwithZ/2Z.SotakeG=D=ha,b|a2=b2=ei,andHa=kerϕawhereϕa:GZ/2Ztakesato1andbto0.InthesamewaywedefineHb,andfinish.Thefollowingisthecrucialclaim:
THEAUTOMORPHISMTOWEROFACENTERLESSGROUP(MOSTLY)WITHOUTCHOICE9Claim3.8.AssumeG1EG2,CG2(G1)={e}andthat(G1,A)isaspecialpair.Then(G2,A)isaspecialpair.Proof.FirstweshowthatCG2(A)={e}.SupposethatxCG2(A),soxax1=aforallaA.Sinceconjugationbyx(i.e.themaph7→xhx1inG1)isanautomorphismofG1,(asG1isanormalsubgroupofG2),itfollowsfrom(G,A)beingaspecialpair(byremark3.5,clause(1))thatitmustbeid.Hence,xCG2(G1),butweassumedCG2(G1)={e}hencex=e.NextassumethatxEG2,Aywherex,yG2andweshallprovex=y.Thereisanisomorphismπ:hx,AiG2→hy,AiG2takingxtoyandfixingA.Wewishtoshowthatx=y,soitisenoughtoshowthatx1π(x)CG2(A).Thisisequivalenttoshowingx1π(x)(x1)x=a,i.e.x1π(xax1)x=a,i.e.π(xax1)=xax1(rememberthatπ(a)=a)foreveryaA.Butxax1isanelementofG1(asG1EG2),andπ:hxax1,AiG1→hπ(xax1),AiG1mustbeidbecause(G1,A)isaspecialpair,andwearedone.Note3.9.IfGiscenterlessthenGEAut(G),andCAut(G)(G)={e}.Conclusion3.10.AssumeGiscenterlessand(G,A)isaspecialpairthen:(1)(Gα,A)isaspecialpairforeveryαord.(2)CGα(A)={e}foreveryα.Proof.(2)followsfrom(1).Prove(1)byinductiononα.Forlimitordinal,itsclearfromthedefinitions,andforsuccessors,thepreviousclaimfinishesthejobusingtheabovenote.Conclusion3.11.Letγbeanordinal,Gacenterlessgroupthen:(1)CGγ(G)={e}.(2)norGγGβ=Gβ+1,forβ<γ.(3)norβGγ(G)=Gβforβγ.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents