49 pages
English

Découvre YouScribe en t'inscrivant gratuitement

# The Kramers law

Découvre YouScribe en t'inscrivant gratuitement

Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
49 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur
The Kramers law : Validity, derivations and generalizations Nils Berglund MAPMO, Universite d'Orleans CNRS, UMR 6628 et Federation Denis Poisson Partly based on joint work with Florent Barret, Ecole Polytechnique, Palaiseau Bastien Fernandez, CPT, CNRS, Marseille Barbara Gentz, University of Bielefeld Institut Henri Poincare, Paris, 26 January 2011

• langevin equation

• stochastic differential

• equivalent notation

• invariant probability

• system need

• local minima

• gaussian white

• arrhenius law

Sujets

##### Maxima and minima

Informations

 Publié par chaeh Nombre de lectures 33 Langue English

Extrait

The Kramers law :
Validity, derivations and generalizations
Nils Berglund MAPMO,Universite´dOrl´eans CNRS,UMR6628etFe´d´erationDenisPoisson www.univ-orleans.fr/mapmo/membres/berglund
Partly based on joint work with Florent Barret , Ecole Polytechnique, Palaiseau Bastien Fernandez , CPT, CNRS, Marseille Barbara Gentz , University of Bielefeld
InstitutHenriPoincare´,Paris,26January2011
Stochastic diﬀerential equation a.k.a. (overdamped) Langevin equation d x t = −r V ( x t ) d t + 2 ε d W t
:poetntial,rgow
. V : R d R . W t : d -dim Brownian motion
Equivalent notation : x ˙ = −r V ( x ) + 2 ε ξ t
nigatinnity
. ξ t : Gaussian white noise, h ξ t i = 0 , h ξ t ξ s i = δ ( t s )
1
Stochastic diﬀerential equation a.k.a. (overdamped) Langevin equation d x t = −r V ( x t ) d t + 2 ε d W t . V : R d R . W t : d -dim Brownian motion
:poten
Equivalent notation : x ˙ = −r V ( x ) + 2 ε ξ t
tial,growingtanintiy
. ξ t : Gaussian white noise, h ξ t i = 0 , h ξ t ξ s i = δ ( t s )
Some properties :
. Invariant probability measure : µ (d x ) = Z 1 e V ( x ) d x . System is reversible w.r.t. µ (detailed balance) p ( y, t | x, 0) e V ( x ) = p ( x, t | y, 0) e V ( y )
1-a
Main question
Assume V ( x ) has several (= at least
two) local minima.
How long does the system need
average
another
to go from one minimum
one
(for
ε
1 )?
on
to
2
• Ebooks
• Livres audio
• Presse
• Podcasts
• BD
• Documents