Un parcours explicite en théorie multiplicative

icon

46

pages

icon

Français

icon

Documents

2003

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

46

pages

icon

Français

icon

Ebook

2003

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur

  • mémoire


MÉMOIRE Un parcours explicite en théorie multiplicative présenté pour l'obtention de l'Habilitation à Diriger des Recherches Université de Lille 1 Olivier Ramaré présenté et soutenu publiquement le 6 Juin 2003 devant le jury composé de Jean-Marc Deshouillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Président Michel Balazard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rapporteur Hédi Daboussi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rapporteur Andrew Granville . . . . . . . . . . . . . . . . . . . . . . . . . .

  • catégorie des problèmes polynômiaux

  • crible de dimension

  • constante de ?nirel'man

  • parcours explicite en théorie

  • tamment sur le problème du zéro de siegel

  • cribles

  • contribution des bords de l'intervalle

  • parcours explicite en théorie multiplicative


Voir Alternate Text

Publié par

Publié le

01 juin 2003

Nombre de lectures

34

Langue

Français

20Habilitationvierunivjane2010rsitaire22.3.2T.able.des.mati?res.1.A.p.erturbationtedexpansionehametho.dP7.1.0.1.I.n.tro.duction....3.1.1...........b...ork.Random.30.....lab.........3.eakly.....results...24.........267.1.0.2.P.erturbation.Expansionthe:.Outlines.of.the.Metho.d..........path.....18.maximal..8.1.0.3generalSome.denitions....23.sums.random.ti.................sc...................tro.........metho9.1.0.4.Main.resultscomp.....A.................tro...................eigh.the...........W.to.el10.1.0.5.A.w.ork2.3.4ed-out.example............Limit.Asymptotic.fo.some.endan.ariables.tro.................3.1.2........11.2.Some.limit.resultsDononsrandom.trees.13.2.1.In.tr.o.duction25.a...................I.................3.2.2.di...............3.2.3.o.urn.......813ject2.2.Distances.in.T.rees......30.tation...............I.................3...................17.W13ted2.2.1toIminimalneltro.duction................2.3.3.eigh.path.the.lab...................19.Some.questions..............13.2.2.2.D.i.gital.trees21.Some.Theorems.3.1.b.vior.r.of.w.dep.t.v.23.in.duc.on...............................2313Main2.2.3.Notation.and.metho.dolo.gy......................3.1.3.i.ussi....................15.2.2.4.D.i.stanc.es.in3.2DSToly.urns.....................................3.2.1.n.duction............15.2.2.5.T.ries............26.Em.ed.ng.d...........................27.Asymptotic.osition.f.discrete..............1622.33.2.4Binaryprotreew...............................3.3.fragmen...............................3.3.1.n.duction17.2.3.1.I.n.tro.duction....................30...3.3.2ofHomogeneous.random.fragmen.tation.pro3.4.4cess39.......................Some..31.3.3.3.Exp3.4.3onenmotia.lorksfragmen.tation.probabilit.yduction...............36................32enerating3.3.4generalizedA.pro.ject.wfutureork..............tro.................................3.4.2.examples........36.3.4.A.pattern.matc.hing.probl.e.m....37.G.function.the.Moran.del.........37.Some.w........................36.3.4.1.I4nη = (I−μF )η +ξ ,n+1 n n n+1
ξ :n
μ :
F :n
(I−μF )n
η r rn
F , μn
(X )i,n 0≤i≤n
nX
lim lim sup n cov(X ,X ) = 0;0,n r,n
N→N0 n→+∞
r=N
algorithms(fragmennitetatiofollontproendscesses,w-wMoranmatrixmoofdel.aIn).ouraPhdinthesis,,weyproevofedtheanhasticexplicittegerformstoulawithforhatheraasymptoticcenerroraluedofvcertainfolloclassesNamelyofrandomstoalgorithms,cappropriatehasticobtaintracickelopmeningmomenatraclgorithms.ofWofechaenvheprodev:elopcollabedhiawmethoedaofofanalysisstationaryofandtherealpverformancestudiedcallede"psatisfyingerturbationconditionexpansion".depMore?lypreciselyrandom,endence,givdepenbaanrecursivdeterministicetoequationaninxpltheiformdevytprobabilitthetotsrelatedkingquestionsinariousformvawithsequenceconcernedsizeis(orkiswgivhinresearcwhicOurdepctivitiesonAcesseswherehwingResearcInonorationisLouhicaSanap[5]),erturbation,eortvRepconsideredthetriangularadaptationrstep-size,yLimitrotralwiseCen,ateredgivsquareentegrablethev5randommatrix.ariablesThethe"peeharturbationwexpansion",methothedwingisofbasedeakonendencereplacingatheprandomtrees.urns,trees,conadaptivandTheoremtrolapplicationseakmatrixeofviatowandersionitsvtheoryasquarerandomPn
N N lim n cov(X ,X ) = 00 n→+∞ 0,n r,nr=N
˜(X ) S :=i,n 0≤i≤n nP Pn n˜ ˜X S := Xi,n n i,ni=1 i=1
1, 2,···n
n m n m
n m
x (U,1−U)
U [0,1]
−xn = 0 1−e x Ux (1−U)x
−xe n l
−l1−e
(U,1−U)
N(x)
d
,digitaloftrees.yWter-noeofharepresenvgeneralizationeletalsowstudiedthetheedextremalcess.waeighttedwithpathtimelengthsandinothers)randomwithbinaryUsingsearc[52],hvtreesstableconstructedhafromeacatherandom6psedistributionrmhauta-Ationpieceof2,aenconstructedendene(indepvvhadistribution.eyWin.Janson.vWtheoreme,haumvendeCyrilalsostudyingbalkeenadvingetterestedalindelsomein"Poolysizesainurns"e([3])y(AwmoindenitelydelevwhicevhsizeconsistsprobabilitofLasmardraiswingtoonepiecesballfrom,athent)addingrandothatMahmoudblaccollabkandballstaryaindenitelyndtechducedredanballs,Ralphwhereetheprovdistributionaluestheosamefwhicsuctheandertegeratdeptheendogetheronwtheecolorheighofrandomthehdrastepwnbbalplk).WWconsideredethisstudieddimensionthedistancesasytomptoticwcomppieceosition,withalmostdesurelyandandofinstudieddistribution,andforprobabilitavfamilyeoferandomitdistributionsstable.oftineryandwsmallestery.withF4]),ragmenwithtationypro([1,cessNabilrepresen,tsbrokanotherinfotcusoof(indepourtlyrethesearcusingh.newWendenecopieshathevmeectorbHosameenorationinInterested,inwiththecomplimenfolloprobabilitwingisproblem.stable.StartingawithhniqueantroobbjectSvoftesizeandtheNeiningerlargewenoughhaandeletvisawherelimithaforsequencerandomofariableindeptheendenasymptoticallybhetsanrandombvofector,pieceswherethetofisproaTuniformwithdistributedBanderierrandomevvariastartedbletheontrandomavwariablwhic.atAhineither.ancesisyfromsteMoorwhicbacistotorigin.pebiologysofailurethe.ofismoontofunctionsComplextThistimeconstructedeMoransdelsuch,withrelatedprobabilitoyopulationandande,theoryvOurapproachhbasedthatgenerating,andwAnalysis.ebreakTy =φ θ +v ; t≥ 0t t tt
{y} {v} {φ}t t≥0 t t≥0 t t≥0
{θ} dt t≥0
θ =θ +wt+1 t t+1
wt+1
ˆθt
Tˆ ˆ ˆθ =θ +μL (y −φ θ ).t+1 t t t tt
μ Lt
pursued.iseof,scalartracobtainoftthatvisalgorithmstroleenconoundsautomaticbandtocessing,cproasignalosttication,Resultsidenpapsystemcinthatareerturbationthehissuewhere-dimensionalstep-sizestohcnhasticaregressoronandethemainunknothewnhatime-v43,aryingtparame-toter.andThiskingmoedeltencompassesgettingmancesses,ythedierenparametertisapplications,theincludingacwhihannelbeinqualbization,ttimeTheredelaastyanalysisestimationtandInectributions,hoiscancellationounds[87].kingInthattheesequelinitInisaassumedhthatgoaltheeparametertvonlyariationtheobTeysose,tuseortanhnique,impasAnconsistingductionximationstronestedInm1.0.1structuredkingmethothe(1.2)(1.3)whereationexpansionreferrederturbationaspadaptationandandnoisisreferandomrredector,toctcanheelag-noise.hosenTaoumtracerkdierenthewvys.ariationsisofvtheliteratureparameter,theitofisofcustomaryypto(1.3).usemaconrecursivtheegoalalgorithmtoforbupndatingtracanerrors.estimateinAdirections1vChapitrebThisobtaineddecomp[31,enables42].computationthisexpliciterfordierenmomenapproacandisrelatedOurtities.isMostobtainofxplithesesialgorithmsexpressioncannotbbeforputtracinerror.theoformpurpandwlinearwillheatecregressionreferredmoode"pelyexpansion",linariationsapproectiv(1.3)inyaprorespwithproucaresimpler(1.1)thanobservoriginalerrorwherecess.vparticularofositionthetheparameterof(seeexpressions[31,the87]tsandotherthequanreferences7therein).T˜ ˜θ = (I−μLφ )θ +μLv −w ,t+1 t t t t t+1t
˜ ˆ ˜θ = θ −θ θt t t t+1
u v w˜ ˜ ˜ ˜θ = θ +μθ +θ ,t t t t
u T u u˜ ˜ ˜ ˜θ = (I−μLφ )θ , θ =θ =−θ ,t 0 0t+1 t t 0
v T v v˜ ˜ ˜θ = (I−μLφ )θ +Lv, θ = 0,t t tt+1 t t 0
w T w w˜ ˜ ˜θ = (I−μLφ )θ −w , θ = 0.t t+1t+1 t t 0
u˜{θ }t
v˜{θ }t
w˜{v} {θ } {w}t tt+1
v w˜ ˜θ θt
δ = (I−μF )δ +ξ, δ = 0t+1 t t t 0
tX
= Φ(t,s)ξs
s=0
{F} {ξ} (d×1)t t≥0 t t≥0
Φ(t,s)

(I−μF )(I−μF )···(I−μF ), t>s t t−1 s+1
I, t =s

0,
δ μt
TF =Lφt t t
ξ =Lv ξ =−w .t t t t t+1
¯ ¯F =E(F ) Z =F −F (I−μF )t t t t t t
¯I−μF = (I−μF )+μZ.t t t
(0) (0) (0)¯J = (I−μF )J +ξ, J = 0t tt+1 t 0
(0) (0) (0) (0)¯H = (I−μF )H +μZJ , H = 0t tt+1 t t 0
(0) (0)
δ = J +H .t t t
mea-aExpansionifaluedwethew,ectingaccounrerecuterm,randomifcanttotransienia(1.12)isFAanotherwise.oseHere,tothetdepcendancerecurrenceofseparate.sithe(1.9)upheonlag-noisetheofstep-size(1.wneousiseimplicit.yEqscess,(1.6)ector-vandy(1.7a)ema;y(1.11)bosee(1.8)rewrittenwas:(1.8)awith,(1.4)thiswhereector.isfordenitions,assothese1.0.2toneighOutlineccordingMetho(1.14)(1.1)recursivequationycthe(1.13)successivobeandestimatesmaofdecompthearegressionproco-aluedmeasuremenaccordingtvnoise,theeciensurementsisforgetnoise,thebinitiallinear,conditions.ess,(1.7)prolagNonoisedecomp(1.6)the(1.10)equationsAppliedintottheorecurrencrecursionserandomequationmatrix-v(1.8),isthemilarlywholesproequationcedurewheregoSinceesvastsfollotws.errorsDenoteciated(1.5)(1.8)asPosederturbatiodecompt-erroraccoun:tssforthethederrorsromandandas3),denedrrenceishasticinstotroeducedinhomogbeydwncan.writeWely,8and,(0)
Jt
tX
(0)
J = ψ(t,s)ξst+1
s=0

¯ ¯ ¯(I−μF )(I−μF )···(I−μF ), t>s t t s+1
ψ(t,s) = I, t =s

0,
δt
(0) (1) (n) (n)
δ =J +J +···+J +H ,t t t t t
(r) (n)
J , 0≤r≤n Ht t
(0) (0) (0)¯J = (I−μF )J +ξ ; J = 0t tt+1 t 0
(r) (r) (r−1) (r)¯J = (I−μF )J +μZJ ; J = 0, 0≤t<rt tt+1 t t t
(n) (n) (n) (n)
H = (I−μF )H +μZJ ; J = 0, 0≤t<nt tt+1 t t t
q≥ 1 X ={X } (l×1)n n≥0
δ = (δ(r)) Xr∈N
(δ,q) C ={C ,···,C }1 q
1≤m<s≤q m t ,···,t (s−m) t ,···,t t ≤···≤1 m m+1 s 1
t <t +r≤t ≤···≤tm m m+1 s
sup |Cov(X ···X ,X ···X )|≤C δ(r)t ,i t ,i t ,i t ,i s1 1 m m m+1 m+1 s s
i ,···,i1 s
X i Xn,i n
p ≥ 1 n ∈ N G = {G} (d×d)t t≥0
(δ,p(n+2))
X
p(n+2)/2−1(r +1) δ(r)<∞.
r
D (G) j ∈ {1,···,n} 0 ≤p,n
s≤t<∞
X j/2G ···G ≤D (G)(t−s) . i i p,n1 j
pn/j
s≤i <···<i ≤t1 j
prompctor-onenteofwherequationak-depwhere,nite.DenitionThetecnotiondofasingweandak-dep,endencbe,forintraoanducAssumeasis,atbyeDoukhantheandtherLess.ouhichi[28].alWelyeasak-mixingweprrst-orderoendence)c-weesseszerencvalueompcassmaaallarinnity.geandclasszerocrfsemoasdelscesseandetinexistsponstantarticularostrthatonglydprrespoac

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text