for Sparse Principal Component Analysis

icon

30

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

30

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Optimal solutions for Sparse Principal Component Analysis Alexandre d'Aspremont, Francis Bach & Laurent El Ghaoui, Princeton University, INRIA/ENS Ulm & U.C. Berkeley Preprint available on arXiv 1

  • g1 g2

  • pca sparse

  • also hard

  • genes

  • alexandre d'aspremont

  • get sparse factors

  • numerically cheap


Voir icon arrow

Publié par

Nombre de lectures

17

Langue

English

Optimal solutions
for Sparse Principal Component Analysis
Alexandre d’Aspremont, Francis Bach & Laurent El Ghaoui,
Princeton University, INRIA/ENS Ulm & U.C. Berkeley
Preprint available on arXiv
1
Principal Component Analysis
Introduction
Classic dimensionality reduction tool. Numerically cheap:O(n2)as it only requires computing a few dominant eigenvectors.
Sparse PCA
Getsparsefactors capturing a maximum of variance.  problem. combinatorialNumerically hard: Controlling the sparsity of the solution is also hard in practice.
2
10
5
0
−5 −5
0
PCA
Inrtod
−5 0 5 510 f210 15f1
uciton
3 2 1 0 −1 1 0 −1
Sparse PCA
0 1 −2 2 33g2 g1−4
−1
Clustering of the gene expression data in the PCA versus sparse PCA basis with 500 genes. The factorsfon the left are dense and each use all 500 genes while the sparse factorsg1 g2andg3on the right involve 6, 4 and 4 genes respectively. (Data: Iconix Pharmaceuticals)
3
Voir icon more
Alternate Text