Hydrostatic flows with convex velocity profiles pdf file See final version in Nonlinearity
25 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Hydrostatic flows with convex velocity profiles pdf file See final version in Nonlinearity

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
25 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

HOMOGENEOUS HYDROSTATIC FLOWS WITH CONVEX VELOCITY PROFILES Yann Brenier Abstra t We onsider the Euler equations of an in ompressible homogeneous uid in a thin two-dimensional layer 1 < x < +1, 0 < z < , with slip boundary onditions at z = 0, z = and periodi boundary onditions in x. After res aling the verti al variable and letting go to zero, we get the following hydrostati limit of the Euler equations t u + u x u + w z u + x p = 0; (1) x u + z w = 0; z p = 0; (2) supplemented by slip boundary onditions at z = 0 and z = 1 and periodi boundary onditions in x. We show that the orresponding initial-value problem is lo ally, but generally not globally, solvable in the lass of smooth solutions with stri tly onvex horizontal velo ity proles, with onstant slopes at z = 0 and z = 1. Resume On onsidere les equations d'Euler d'un uide in ompressible ho- mogene se mouvant dans une ou he min e 1 < x < +1, 0 < z < , glissant sur les bords z = 0, z = et periodique en x.

  • orresponding

  • equations

  • verti al

  • lagrangian sheets

  • slip boundary

  • horizontal variable

  • equations d'euler

  • boundary ondi

  • ave onditions de glissement en z

  • semi-lagrangian equations


Sujets

Informations

Publié par
Nombre de lectures 7
Langue English

Extrait


HOMOGENEOUS
en
HYDR
x
OST
ersit
A

TIC
et
FLO
son
WS
dans
WITH

CONVEX
h
VELOCITY
z
PR
trons
OFILES

Y
z
ann
ho-
Br
<
enier
z



!
W
u
e
+


the

Euler
temps
equations

of
don
an
v

Lab
homogeneous
1
uid
se
in
mince
a
0
thin
sur
t
=
w
x
o-dimensional

la
a
y
e
er
u
1
z
<
;
x
=
<
;
+
en
1
et
,
x
0
r
<
pas
z

<
h


,
de
with

slip
tes
b
z
oundary
um

aris
at
uide
z

=
an
0,

z
<
=
1

z
and
glissan
p
b
erio
0,

et
b
dique
oundary
P

t
in
helle
x
passage
.
limite
After
on
rescaling

the

v
u@

w
v
+
ariable
=
and
x
letting
z

;
go
=
to
v
zero,
glissemen
w
=
e
=
get

the
e
follo
Nous
wing
p
h
esoudre
ydrostatic
etit,
limit
men
of

the
le
Euler
de
equations
dans

solutions
t

u
les
+
horizon
u@

x
exes
u
p
+
tes
w
0

1.
z
d'analyse
u
erique,
+
e

F
x
d'un
p

=
mog
0
ene
;
mouv
(1)
t

une
x
he
u
1
+
x

+
z
,
w
<
=
<
0
,
;
t

les
z
ords
p
=
=
z
0

;
p
(2)
erio
supplemen
en
ted
.
b
ar
y
hangemen
slip
d'
b
ec
oundary
v

et
at

z
la
=

0
0,
and
arriv
z
aux
=
equations
1
ydrostatiques
and
t
p
+
erio
x

+
b

oundary
u


in
p
x
0
.

W
u
e

sho
w
w
0
that

the
p

0
onding
a
initial-v
ec
alue
de
problem
t
is
z
lo
0

z
,
1
but
p
generally
erio
not

globally
en
,
.
solv
mon
able
qu'on
in
eut
the


en
of
p
smo
mais
oth
globale-
solutions
t
with
g

en

eral,
v
probl
ex
eme
horizon
Cauc
tal
y
v
la
elo
des

r
y
eguli
proles,
eres
with
t

prols
t
vitesse
slop
tale
es
t
at
t
z
v
=
a
0
ec
and
en
z

=
en
1.
=
R
et

=
esum


oratoire
e
n
On


Univ


ere
P
les
6,

rance.
equations
d'EulerIn
BRENIER
;
:
e
CONVEX
after
VELOCITY
tly
PR

OFILES

1
)
In
2
tro
is

b
The
r
Boussinesq
h
equations
understanding
of
z
a
)
three-dimensional
of


in
the
viscid
homogeneous
uid
equations
in
and
h
)
ydrostatic
x
balance
The
write
the
:
y

whic
t
as
u
=
+
)
(
)
u:
the
r
ariable
x
[8
)
has
u
in
+
when
w


densit
z
v
u
t
+
in
r
the
x
(
p

=
0
0
z
:
=
(3)
w
r
exactly
x
del
:u
and
+
t

Eu-
z
b
w

=
u
0
(
;
(

t;
z
(
p
t;
+


w
=
v
0
the
;
in
(4)


are
t
ered.

een
+
in
(
literature
u:
degenerate
r
densit
x
whic
)
to

Then
+

w
tirely

from
z
a

y
=
absorb
0
pressure
:
e
(5)
system
In
u
these
r
equations,
+
(
u
x;
p
z
(6)
)
+
=
=
(
z
x
:
1
equations,
;

x
equations
2
ond
;
ydrostatic
z
tioned
)
h.
stands
y
for
imp
the
in
space
the
v
equations
ariable,
they
x
formally
2
the
R
ariable
2
ws
,
t;
0
!
<
x;
z
;
<
x;
1
w
b
z
eing
(8)
the
x;
v
p

z

and
ordinate,
to
r
pap
x
mainly
=
w
(
(1),

HHEs,
x
tal
1
one-dimensional,
;


[2
x
and
2

)
then
is
v
the
There
horizon-
b
tal
apparen
gradien
little
t,
terest
(
the
u;
for
w
somewhat
)

=
the
(
y
u
uniform,
1
h
;
onds
u
a
2
uid.
;
the
w
y
)
b
stands
en
for
remo
the
ed
v
the
elo



y
densit
eld,

p
e
(
ed
t;
the
x;
term)
z
w
)
obtain
and
simpler

:
(
t
t;
+
x;
u:
z
x
)
u
are
w
the
z
pressure
+
and
x
the
=
densit
:
y
r
elds.
:u
T

ypical
w
b
0
oundary


p
tions
0
are
(7)
w
resulting
(
that
t;
e
x;
homogeneous
z
ydrostatic
)
(HHE),
=

0
to
at
h
z
mo
=
men
0
in
and
(c
z
4.6)
=
ma
1
pla
(slip
an
b
ortan
oundary
role

the
and
of
spatial
3D
p
ler
erio
from

h
y

in
e
x
obtained
.
rescaling
A
v
discussion
v
of
z
these
follo
equations
:

(
b
x;
e
)
found
u
in
t;
[6
z

)
from
w
the
t;
Hamiltonian
z
and
!
non-linear
(
stabilit
x;
y
=
p
;
oin
p
t
t;
of
z
view.
!

(
that,
x;
when
=
the
;
Coriolis
letting
force
go
is
zero.
added,
this
the
er,
so-called
e
primitiv
address
e
t
equations
o-dimensional
widely
ersion
used
(2)
in
the
o
when

horizon
y
v
and
is
meteorology
and
[10
tro

a
(see
alsoglobal
BRENIER
reform
:
Theorem
CONVEX
),
VELOCITY
that
PR
initial
OFILES
tal
particular
Z

to
of
,
solutions,


e

;
C
Lagrangian
solutions
function
and
(13)
dened
the
as
prole
follo
1
ws.
(9),
W
(2)
e
However,
assume
)
((
pro
u;
use
w
ordinate
)(
to
t;
sheets
x;
;
z
(
)
Z
;
are
p
T
(
w
t;
initial
x
x;
))
to
to
C
b
with
e
main
smo
pr
oth
al
functions,
by
sa
op
y
(0
C
solutions
1
Main
in
step
t
HHE's,
>
el
0,
the
x
this
2
is
R
W
,
e
and
(
C
y
2
is
in
:
z
)
,
0)
1-p
1)
erio
;

examples
in
C
x
solv
,
alue
for
only
whic
w
h
izon
the
(0
horizon
)
tal
e
v
e
elo
x

in
y

prole
C
z
(11).
!
is
u
The
(
for
t;
lo
x;
solvable
z
de

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents