Projected quasi Newton methods for constrained and non smooth optimization

icon

25

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

25

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

1 Projected Newton-type Methods in Machine Learning Mark Schmidt University of British Columbia Vancouver, BC, V6T 1Z4 Dongmin Kim University of Texas at Austin Austin, Texas 78712 Suvrit Sra Max Planck Insitute for Biological Cybernetics 72076, Tubingen, Germany We consider projected Newton-type methods for solving large-scale optimiza- tion problems arising in machine learning and related fields. We first intro- duce an algorithmic framework for projected Newton-type methods by review- ing a canonical projected (quasi-)Newton method. This method, while concep- tually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are more scalable, namely, two-metric projection and in- exact projection methods. Finally, we show how to apply the Newton-type framework to handle non-smooth objectives. Examples are provided through- out the chapter to illustrate machine learning applications of our framework. 1.1 Introduction We study Newton-type methods for solving the optimization problem min x f(x) + r(x), subject to x ? ?, (1.1)

  • projected newton methods

  • methods

  • memory broyden-fletcher- goldfarb-shanno

  • hessian

  • davidson-fletcher-powell

  • newton method

  • powell- symmetric-broyden


Voir icon arrow

Publié par

Nombre de lectures

22

Langue

English

1ProjectedNewton-typeMethodsinMachineLearningschmidtmarkw@gmail.comdmkim@cs.utexas.eduMarkSchmidtUniversityofBritishColumbiaVancouver,BC,V6T1Z4DongminKimUniversityofTexasatAustinAustin,Texas78712SuvritSrasuvrit@tuebingen.mpg.deMaxPlanckInsituteforBiologicalCybernetics72076,Tu¨bingen,GermanyWeconsiderprojectedNewton-typemethodsforsolvinglarge-scaleoptimiza-tionproblemsarisinginmachinelearningandrelatedfields.Wefirstintro-duceanalgorithmicframeworkforprojectedNewton-typemethodsbyreview-ingacanonicalprojected(quasi-)Newtonmethod.Thismethod,whileconcep-tuallypleasing,hasahighcomputationcostperiteration.Thus,wediscusstwovariantsthataremorescalable,namely,two-metricprojectionandin-exactprojectionmethods.Finally,weshowhowtoapplytheNewton-typeframeworktohandlenon-smoothobjectives.Examplesareprovidedthrough-outthechaptertoillustratemachinelearningapplicationsofourframework.1.1IntroductionWestudyNewton-typemethodsforsolvingtheoptimizationproblemminf(x)+r(x),subjecttox,x1.1()
2ProjectedNewton-typeMethodsinMachineLearningwheref:RnRistwicecontinuouslydierentiableandconvex;r:RnRiscontinuousandconvexbutnotnecessarilydierentiableeverywhere;whileisa“simple”convexconstraint-set.Thisformulationisgeneralandcapturesnumerousproblemsinmachinelearning,especiallywherefcorrespondstoaloss,andrtoaregularizer.Letus,however,deferconcreteexamplesof(1.1)untilwehavedevelopedsometheoreticalbackground.Weproposetosolve(1.1)viaNewton-typemethods,acertainclassofsecond-ordermethodsthatareknowntooftenworkwellforunconstrainedproblems.Forconstrainedproblemstoo,wemayconsiderNewton-typemethodsthat,akintotheirunconstrainedversions,iterativelyminimizeaquadraticapproximationtotheobjective,thistimesubjecttoconstraints.ThisideadatesbacktoLevitinandPolyak(1966,§7),anditisreferredtoasaprojectedNewtonmethod.ProjectedNewtonmethodsforoptimizationoverconvexsetssharemanyoftheappealingpropertiesoftheirunconstrainedcounterparts.Forexample,theiriterationsareguaranteedtoimprovetheobjectivefunctionforasmallenoughstepsize;globalconvergencecanbeshownunderavariantoftheArmijocondition;andrapidlocalconvergenceratescanbeshownaroundlocalminimasatisfyingstrongconvexity(Bertsekas,1999).Inasimilarvein,wemayconsiderprojectedquasi-Newtonmethods,whereweinterpolatedierencesinparameterandgradientvaluestoapproximatetheHessianmatrix.TheresultingNewton-typemethodsarethesubjectofthischapter,andwewillparticularlyfocusonthelimited-memoryBroyden-Fletcher-Goldfarb-Shanno(L-BFGS)quasi-Newtonapproximation.ThemainappealoftheL-BFGSapproximationisitslinear-timeiterationcomplexity,anditsstrongempiricalperformanceonavarietyofproblems.Summaryofremainder.Wefirstrestrictourselvestosmoothoptimiza-tion,wherer(x)=0.Forthissetting,wedescribeprojectedNewton-typemethods(§1.2),coveringbasicimplementationissuessuchasHessianap-proximationandline-search.Then,wedescribetwo-metricprojectionmeth-ods(§1.3),followedbyinexact(ortruncated)projected-Newtonmethods(§1.4).Finally,wediscussthenonsmoothsetting,wherer(x)￿=0,forwhichwedescribetwoNewton-typemethods(§1.5).1.2ProjectedNewton-typeMethodsProjectedNewton-typemethodsoptimizetheirobjectiveiteratively.Atiterationk,theyfirstapproximatetheobjectivefunctionaroundthecurrent
Voir icon more
Alternate Text