HEXFET® Power MOSFET
11 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

HEXFET® Power MOSFET

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
11 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Doctorat, Bac+8
IRFR3710ZPbF IRFU3710ZPbF HEXFET® Power MOSFET VDSS = 100V RDS(on) = 18m? ID = 42A 1 AUTOMOTIVE MOSFET PD - 95513A Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating tempera- ture, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. S D G Description Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free Features D-Pak IRFR3710Z I-Pak IRFU3710Z HEXFET® is a registered trademark of International Rectifier. Absolute Maximum Ratings Parameter Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V A ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) IDM Pulsed Drain Current PD @TC = 25°C Power Dissipation W Linear Derating Factor W/°C VGS Gate-to-Source Voltage V EAS (Thermally limited) Single Pulse Avalanche Energy mJ EAS (Tested ) Single Pulse Avalanche Energy Tested Value IAR Avalanche Current A EAR Repetitive Avalanche Energy mJ TJ Operating Junction and TSTG Storage Temperature Range °C Soldering Temperature,

  • r1 r1

  • typical forward

  • ?1 ?1

  • avalanche energy mj

  • capacitance

  • operating area

  • typical output

  • coss output

  • ?j ?j


Sujets

Informations

Publié par
Nombre de lectures 13
Langue English

Extrait

PD - 95513A
IRFR3710ZPbFAUTOMOTIVE MOSFET
IRFU3710ZPbF
®HEXFET Power MOSFET
Features
D
Advanced Process Technology V = 100VDSS
Ultra Low On-Resistance
175°C Operating Temperature
R = 18mΩDS(on) Fast Switching
G
Repetitive Avalanche Allowed up to Tjmax
Lead-Free I = 42AD
S
Description
®Specifically designed for Automotive applications, this HEXFET
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating tempera-
ture, fast switching speed and improved repetitive avalanche
rating . These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and D-Pak I-Pak
a wide variety of other applications. IRFR3710Z IRFU3710Z
Absolute Maximum Ratings
Parameter Max. Units
Continuous Drain Current, V @ 10V (Silicon Limited)I @ T = 25°C 56GSD C
I @ T = 100°C Continuous Drain Current, V @ 10V GS 39 AD C
I @ T = 25°C Continuous Drain Current, V @ 10V (Package Limited)GS 42D C
Pulsed Drain Current I 220DM
P @T = 25°C Power Dissipation 140 WD C
Linear Derating Factor 0.95 W/°C
V Gate-to-Source Voltage ± 20 VGS
Single Pulse Avalanche EnergyEAS (Thermally limited) 150 mJ
Single Pulse Avalanche Energy Tested Value E (Tested ) 200AS
Avalanche CurrentIAR See Fig.12a, 12b, 15, 16 A
Repetitive Avalanche Energy EAR mJ
T Operating Junction and -55 to + 175J
T Storage Temperature Range °CSTG
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
Mounting Torque, 6-32 or M3 screw 10 lbf in (1.1N m)
Thermal Resistance
Parameter Typ. Max. Units
R Junction-to-Case ––– 1.05θJC
Junction-to-Ambient (PCB mount) R ––– 40 °C/WθJA
R JA Junction-to-Ambient –––110θ
®HEXFET is a registered trademark of International Rectifier.
www.irf.com 1



Electrical Characteristics @ T = 25°C (unless otherwise specified)J
Parameter Min. Typ. Max. Units Conditions
V Drain-to-Source Breakdown Voltage 100 ––– ––– V V = 0V, I = 250µA(BR)DSS GS D
∆V /∆T(BR)DSS J Breakdown Voltage Temp. Coefficient ––– 0.088 ––– V/°C Reference to 25°C, I = 1mA D
R mΩStatic Drain-to-Source On-Resistance ––– 15 18 V = 10V, I = 33A DS(on) GS D
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V V = V , I = 250µADS GS D
gfs Forward Transconductance 39 ––– ––– S V = 25V, I = 33ADS D
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA V = 100V, V = 0VDS GS
––– ––– 250 V = 100V, V = 0V, T = 125°CDS GS J
IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA V = 20VGS
Gate-to-Source Reverse Leakage ––– ––– -200 V = -20VGS
Qg Total Gate Charge ––– 69 100 I = 33AD
Qgs Gate-to-Source Charge ––– 15 ––– nC V = 80VDS
Qgd Gate-to-Drain ("Miller") Charge ––– 25 ––– V = 10V GS
td(on) Turn-On Delay Time ––– 14 ––– V = 50VDD
tr Rise Time ––– 43 ––– I = 33AD
td(off) Turn-Off Delay Time ––– 53 ––– ns R = 6.8 ΩG
tf Fall Time ––– 42 ––– V = 10V GS
L DD Internal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
GLS Internal Source Inductance ––– 7.5 ––– from package
Sand center of die contact
Ciss Input Capacitance ––– 2930 ––– V = 0VGS
C Output Capacitance ––– 290 ––– V = 25Voss DS
Crss Reverse Transfer Capacitance ––– 180 ––– pF ƒ = 1.0MHz
C Output Capacitance ––– 1200 ––– V = 0V, V = 1.0V, ƒ = 1.0MHzoss GS DS
Coss Output Capacitance ––– 180 ––– V = 0V, V = 80V, ƒ = 1.0MHzGS DS
C eff. Effective Output Capacitance ––– 430 ––– V = 0V, V = 0V to 80V oss GS DS
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
DI Continuous Source Current ––– ––– 56 MOSFET symbolS
(Body Diode) A showing the
GI Pulsed Source Current ––– ––– 220 integral reverseSM
S(Body Diode) p-n junction diode.
V Diode Forward Voltage ––– ––– 1.3 V T = 25°C, I = 33A, V = 0V SD J S GS
t Reverse Recovery Time ––– 35 53 ns T = 25°C, I = 33A, V = 50Vrr DDJ F
di/dt = 100A/µs Q Reverse Recovery Charge ––– 41 62 nCrr
t Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)on
2 www.irf.com


1000 1000
VGS VGS
TOP 15V TOP 15V
10V 10V
6.0V 6.0V
5.0V 5.0V
4.8V 4.8V
4.5V 4.5V100
4.3V 4.3V
BOTTOM 4.0V BOTTOM 4.0V
100
4.0V
10
10
1
4.0V
60µs PULSE WIDTH60µs PULSE WIDTH
Tj = 175°CTj = 25°C
1 0.1
0.1 1 10 100 0.1 1 10 100
V , Drain-to-Source Voltage (V) V , Drain-to-Source Voltage (V)DS DS
Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics
1000 100
T = 25°CT = 175°C 80 J J
100
60
T = 175°CJ
40
10
T = 25°C
J
20
V = 25VDS V = 10VDS
60µs PULSE WIDTH
1.0 0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 10203040 50607080
I ,Drain-to-Source Current (A)DV , Gate-to-Source Voltage (V)GS
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
vs. Drain Current
www.irf.com 3
I
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
Α
)
I
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
D
D
G
,

F
o
r
w
a
r
d

T
r
a
n
s
c
o
n
d
u
c
t
a
n
c
e

(
S
)
f
s
I
,

D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
D

100000 12.0
V = 0V, f = 1 MHZGS I = 33ADC = C + C , C SHORTEDiss gs gd ds
C = C 10.0rss gd V = 80VDS
C = C + C10000 oss ds gd V = 50VDS
V = 20V8.0 DS
Ciss
1000 6.0
Coss
C 4.0rss
100
2.0
10 0.0
1 10 100 0 10 20304050 607080
V , Drain-to-Source Voltage (V) Q Total Gate Charge (nC)G DS
Fig 6. Typical Gate Charge vs.Fig 5. Typical Capacitance vs.
Gate-to-Source VoltageDrain-to-Source Voltage
1000.00 1000
OPERATION IN THIS AREA
LIMITED BY R (on)DS
100.00 100
T = 175°CJ
100µsec
10.00 10
1msecT = 25°CJ
1.00 1
Tc = 25°C
10msecTj = 175°C
V = 0V Single PulseGS
0.10 0.1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1 10 100 1000
V , Source-to-Drain Voltage (V) V , Drain-to-Source Voltage (V)SD DS
Fig 8. Maximum Safe Operating AreaFig 7. Typical Source-Drain Diode
Forward Voltage
4 www.irf.com
I
,

R
e
v
e
r
s
e

D
r
a
i
n

C
u
r
r
e
n
t

(
A
)
S
D
C
,

C
a
p
a
c
i
t
a
n
c
e
(
p
F
)
V
,

G
a
t
e
-
t
o
-
S
o
u
r
c
e

V
o
l
t
a
g
e

(
V
)
G
S
I
,


D
r
a
i
n
-
t
o
-
S
o
u
r
c
e

C
u
r
r
e
n
t

(
A
)
D

3.060
I = 56AD
V = 10VLimited By Package GS 50
2.5
40
2.0
30
1.5
20
1.0
10
0 0.5
-60 -40 -20 0 20 40 60 80 100 120 140 160 18025 50 75 100 125 150 175
T , Case Temperature (°C) T , Junction Temperature (°C)C J
Fig 10. Normalized On-ResistanceFig 9. Maximum Drain Current vs.
vs. TemperatureCase Temperature
10
1
D = 0.50
0.20
0.100.1
R R R0.05 1 2 3 Ri (°C/W) τi (sec)R R R
1 2 3
τ0.02 J τ
Cτ 0.576 0.000540
J τ
0.01 τ
1 τ0.01 τ2 3τ 0.249 0.0014241 τ τ2 3
0.

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents