Inattentive Professional Forecasters

icon

53

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

53

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Doctorat, Bac+8
Inattentive professional forecasters? Philippe Andrade Banque de France & CREM Herve Le Bihan Banque de France First draft: January 2009 This draft: November 2011 Abstract We use the ECB Survey of Professional Forecasters to characterize the dynamics of expec- tations at the micro level. We emphasize the following two new facts: forecasters (i) fail to systematically update their forecasts and (ii) disagree even when updating. We also find, as previous work on other surveys does, that forecasters have predictable forecast errors and dis- agree. We argue that these facts are altogether qualitatively supportive of recent theories in which agents are inattentive when they form their expectations. More precisely, they are in line with a model where agents imperfectly process information due to both sticky information a la Mankiw-Reis, and noisy information a la Sims. However, building and estimating such an expectation model, we find that it cannot quantitatively replicate the error and disagreement observed in the SPF data. Given how inaccurate they are, professionals agree too much to be consistent with the inattention model we test. Keywords: Expectations, imperfect information, inattention, forecast errors, disagreement, business cycle JEL classification: D84, E3, E37 ?We thank our discussants Bartosz Mackowiak, Ernesto Pasten and Gregor Smith as well as Carlos Carvalho, Olivier Coibion, Christian Hellwig, Anil Kashyap, Noburo Kiyotaki, Juan Pablo Nicolini, Giorgio Primiceri, Sergio Rebelo, Jonathan Willis, Alexander Wolman, Michael Woodford, Tao Zha and seminar participants at the Banque de France, ECB, New-York

  • forecasters

  • professionals

  • expectation

  • aggregate forecast

  • cross-section dispersion

  • generate disagreement

  • rather than

  • rational expectation

  • heterogeneity among

  • forecast errors


Voir Alternate Text

Publié par

Nombre de lectures

27

Langue

English

InattentiveprofessionalforecastersPhilippeAndradeHerve´LeBihanBanquedeFrance&CREMBanquedeFranceFirstdraft:January2009Thisdraft:November2011AbstractWeusetheECBSurveyofProfessionalForecasterstocharacterizethedynamicsofexpec-tationsatthemicrolevel.Weemphasizethefollowingtwonewfacts:forecasters(i)failtosystematicallyupdatetheirforecastsand(ii)disagreeevenwhenupdating.Wealsofind,aspreviousworkonothersurveysdoes,thatforecastershavepredictableforecasterrorsanddis-agree.Wearguethatthesefactsarealtogetherqualitativelysupportiveofrecenttheoriesinwhichagentsareinattentivewhentheyformtheirexpectations.Moreprecisely,theyareinlinewithamodelwhereagentsimperfectlyprocessinformationduetobothstickyinformationa`laMankiw-Reis,andnoisyinformationa`laSims.However,buildingandestimatingsuchanexpectationmodel,wefindthatitcannotquantitativelyreplicatetheerroranddisagreementobservedintheSPFdata.Givenhowinaccuratetheyare,professionalsagreetoomuchtobeconsistentwiththeinattentionmodelwetest.Keywords:Expectations,imperfectinformation,inattention,forecasterrors,disagreement,businesscycleJELclassification:D84,E3,E37WethankourdiscussantsBartoszMac´kowiak,ErnestoPaste´nandGregorSmithaswellasCarlosCarvalho,OlivierCoibion,ChristianHellwig,AnilKashyap,NoburoKiyotaki,JuanPabloNicolini,GiorgioPrimiceri,SergioRebelo,JonathanWillis,AlexanderWolman,MichaelWoodford,TaoZhaandseminarparticipantsattheBanquedeFrance,ECB,New-YorkFed,PhiladelphiaFed,San-FranciscoFed,UniversityParis1andattheconferencesESEM2009,AFSE2010,CESIfoon“MacroeconomicsandSurveyData”andSED2010forusefulcomments.Allremainingerrorsareours.WearealsogratefultoSylvieTarrieuforsuperbresearchassistanceaswellastoClaudiaMarchiniandIevaRubenefortheirhelpwiththeSPFdata.ThispaperdoesnotreflectnecessarilytheviewsoftheBanquedeFrance.e-mails:philippe.andrade@banque-france.fr,herve.lebihan@banque-france.fr1
1IntroductionModelsinwhichimperfectinformationandtheformationofexpectationsactasatransmissionmechanismofeconomicfluctuations—inthespiritofFriedman(1968),Phelps(1968)andLucas(1972)—haverecentlyregainedinterestinthemacroeconomicliterature.1Imperfectinformation,inparticular,hasbeenrelatedtotheinattentionofagentstonewinformation,abehaviorthatcanberationalizedbycostlyaccesstoinformationandlimitedprocessingcapacities.2Oneappealofthesemodelsistoprovideanalternativechanneltostickypricestoexplainthepersistenteffectsoftransitoryshocks—andinparticular,monetaryshocks—ontheeconomy.Moreover,thisapproachcanparsimoniouslyaccountforpatternsofindividualexpectationsobservedinsurveydatathatareatoddswiththestandardperfectinformation,rationalexpectationframework,suchaspredictableforecasterrorsandforecastsdifferingacrossforecasters.3Inthispaper,weexploitthepaneldimensionofsuchasurveyofforecasts—namelytheECBSurveyofProfessionalForecasters(SPF)—toproducenewmicrofactscharacterizingtheformationofexpectations.TheECBSPFisaquarterlypanelstartingin1999surveyingaround90forecastingunitsineitherpublicorprivateinstitutionsandallowstotracksequencesofforecastsmadebythesameinstitution.Wethenelaborateonthesenewfactstoassesswhethermodelsofinattentionaccuratelydescribethebehaviorofforecasters.Wefocusontwotypesofinattentionmodelsthathavebeendiscussedintherecentliterature.Ontheonehand,stickyinformationmodelsdevelopedbyMankiw&Reis(2002)andReis(2006a,b),inwhichagentsupdatetheirinformationsetinfrequentlybutgetperfectinformationoncetheydo.OntheotherhandnoisyinformationmodelsproposedbyWoodford(2002),Sims(2003)andMac´kowiak&Wiederholt(2009),inwhichagentscontinuouslyupdatetheirinformationbuthaveanimperfectaccesstoitateachperiod.1See,amongothers,Woodford(2002),Hellwig&Veldkamp(2008),Angeletos&La’O(2009)andLorenzoni(2009).Imperfectinformationisalsocrucialintherecentwelfareanalysisofinformation.See,amongothers,Morris&Shin(2002),Angeletos&Pavan(2007)orAdamor&Weill(2009).Veldkamp(2009)andMankiw&Reis(2010)providesurveys.2SeeMankiw&Reis(2002),Sims(2003),Reis(2006a,b),andMac´kowiak&Wiederholt(2009).3SeeforexampleMankiw,Reis&Wolfers(2003).2
Assomerelatedpreviouswork,weuseprofessionalforecastdatatotestimperfectinformationmod-els.Expertforecastersmaynotberepresentativeoflesssophisticatedagents,sinceprofessionalsobviouslyallocatesubstantiallymoretime,human,collectingandcomputingresourcestothetaskofforecastingmacroeconomicvariables.However,Carroll(2003)showsthattheopinionofprofes-sionalforecastersspreadstofirmsandhouseholds,andhencealsoinfluencestheirexpectationsanddecisions.Furthermore,weexpectprofessionalforecasterstobetheagentsinthebestpositiontopayattentiontotherelevantmacroeconomicinformation.Asaresult,theextentofattentiontonewsamongprofessionalforecasterscanbeseenasanupperboundforotheragents’attentiontoaggregateconditions.Ourpaperhastwomaincontributions.Thefirstoneistodocumenttwonewfactsrelatedtoforecastrevisions,namelythat(i)forecastersdonotsystematicallyupdatetheirforecastsevenwhennewinformationisreleased,andthat(ii)forecasterswhoupdatealsodisagreeontheirforecasts.Theoriginalityofourapproachistoexploitthesequencesofindividualforecastsforagivenevent(sayinflationattheendofagivenyear)providedbytheECBSPFtoconstructadirectmicro-dataestimateofthefrequencyofupdatingaforecast,which,toourknowledge,hasnotbeendocumentedinsurveydatabefore.Theresultsshowthat,onaverage,eachquarteronly75%ofprofessionalforecastersupdatetheir1-yearor2-yearforecasts.Thisfirstresultisinlinewiththepredictionsofasticky-informationmodel.Furthermore,inthissetupthefrequencyofupdatinghasastructuralinterpretationandcorrespondstothekeyparameteroftheattentiondegree.Inadditiontounfrequentupdating,wealsouncoverthatforecasterswhoupdatetheirinformationsetsdisagreeabouttheirforecasts.Consequently,disagreementamongexpertsisnotonlyrelatedtodifferencesintheinformationsetsofforecasterswhoupdatedandofthosewhodidnot,butalsotothefactthat,whentheyupdate,theyusedifferentinformationsets.Thissecondresultisinlinewiththepredictionsofanoisy-informationmodel.Wealsofind,aspreviousworkrelyingonsurveydatadoes,thatforecastsofexpertsexhibitpredictableerrorsandthatforecastersdisagreeastheyreportdifferentpredictionsforthesamevariableatthesamehorizon.Theselattertwo3
characteristicsareinlinewithbothstickyandnoisyinformationmodels.Thesecondmaincontributionofthispaperistoperformaformalempiricalassessmentofinat-tentionmodels.Thefactsweunderlinequalitativelysupportamodelfeaturingatthesametimetwotypesofinattention;namely,sticky-informationa`laMankiw-Reis,andnoisy-informationa`laSims.WedevelopsuchanexpectationmodelandthenusetheSPFdatatocarryoutaMinimumDistanceEstimation(MDE).Moreprecisely,theestimationprincipleistomatchthemomentscharacterizingtheforecasterrorsandthedisagreementgeneratedbythistheoreticalmodelwiththeirempiricalcounterpartobservedintheECBSPFdata.Wefindthatthisinattentionmodelfailstoquantitativelyreproducetheobservedpersistenceoftheaverageforecastingerrorstogetherwiththerelativelysmalldisagreementbetweenforecasters.FittingthesmoothnessobservedintheaverageSPFforecastswouldrequireamuchlowerattentiondegreethanourmicrodataestimates.SuchalowattentionwouldinturnleadtomuchmoredisagreementthanobservedintheSPFdata.Therefore,elementsothersthanthetypeofinattentionincludedinourexpectationmodelareneededtoreconciletherelativelylowdisagreementamongprofessionalsandtherelativelyhighpersistenceoftheaggregateforecastingerror.Ourpaperrelatestothevastliterature,mostlyrelyingonUSdata,thatstudiesthebehaviorofsurveyforecastsandcomparesitwiththeimplicationsoftheoreticalexpectationmodels.Numerousstudies(seePesaran&Weale,2006forarecentsurvey)foundsystematicaggregateforecasterrorsanddisagreementinthesedata,atoddswiththeperfectinformationrationalexpectationframe-work.Here,weprovideevidenceofdisagreementandpredictableforecasterrorsforEuropeanSPFdataandforarecentsampleperiod.Wealsocomplementtheseresultsbyprovidingnewevidenceontheinfrequencyofindividualexpectationsrevision.OurworkisalsorelatedtoMankiwetal.(2003),Branch(2007),Coibion&Gorodnichenko(2008)andPatton&Timmermann(2009),whorelyonthecharacteristicsofsurveyexpectationstoassessinattentionand,moregenerally,imperfectinformationtheories.Mankiwetal.(2003)andBranch(2007)focusonthecross-sectiondistributionofforecaststocalibratethesticky-information4
attentionparametermentionedabove.Bycomparison,weunderlinetheimportanceofinvestigatingtheconsistencyofthisparametervalueswithboththecross-sectiondispersionofforecastsandtheaggregateforecasterrors.Furthermore,weimproveontheirapproachbyconsideringamodelthatcanexplainthedisagreementamongforecasterswhoupdatetheirinformationset.Lastly,ratherthancalibrateit,weestimatetheattentionparameterusingalternativelydirectmicro-dataestimatesandaMDEprocedure.Coibion&Gorodnichenko(2008)lookattheconditionalresponsetovariousstructuralshocksoftheaggregateerroranddisagreementimpliedbysurveystodisentanglethesticky-informationandthenoisy-informationmodelsofinattention.Theyfindmixedsupportinfavorofthetwo,justaswedo.Thedistinctivefeatureofouranalysisisthatweestimateamodelfeaturingsimultaneouslythetwotypesofinattention.Patton&Timmermann(2009)relyontheevolutionofforecastsoverdifferentforecasthorizonstostressthatdifferencesintheinterpretationofinformation—ratherthandifferentinformationsets—arethemainculpritforforecasters’disagreement.Theyleavethesourceofthesedifferentinterpretationsunexplained.Themodelweconsiderisanalternativeapproachtogeneratedisagreementthatdoesnotrelyon“deep”heterogeneityamongforecasters.Ourpaperismoreovercloselylinkedtoseveralrecentcontributionsthatrelyonaggregatetimeseriestoestimatetheattentiondegreeinasticky-informationmodelofinflationdynamics(Kiley2007,Do¨pkeetal.2008,Coibion2010).Whensignificant,theresultsimplyafrequencyofupdatingaforecastrangingfrom10%to30%,wellbelowthefigureof75%weobtain.Partofthediscrepancycouldbeexplainedbythefactthatwerelyonapanelofprofessionals,sincetheseagentsmayupdatemorefrequentlytheirforecaststhanothertypes.However,manyoftheserecentstudies(forinstanceDo¨pkeetal.2008,Coibion,2010)alsouseprofessionalforecasters’expectationstoperformtheirestimation.Thediscrepancyisthusalsorelatedtothemethodology.Studiesthatusemacroeconomictimeseriestypicallyrelyonauxiliaryassumptionsabouttheeconomy,andarepotentiallysubjecttoaggregationbiases.Bycontrast,weprovideadirect,arguablymorereliable,micro-dataestimateofthisparameterthatiskeyinstickyinformationmodels.Althoughwefind5
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text