Invent math Inventiones mathematicae Springer Verlag

icon

23

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

23

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Doctorat, Bac+8
Invent. math. 93, 161-183 (1988) Inventiones mathematicae 9 Springer-Verlag 1988 Nodal sets of eigenfunctions on Riemannian manifolds Harold Donnelly *' 1 and Charles Fefferman **' 2 Department of Mathematics, Purdue University, West Lafayette, IN47907, USA 2 Department of Mathematics, Princeton University, Princeton, NJ 08544, USA 1. Introduction Let M be a compact connected manifold, with C ~ Riemannian metric. The Laplacian A of M is a negative definite, setf-adjoint, elliptic operator. Suppose that Fis a real eigenfunction of A with eigenvalue 2,A F = - 2F. The nodal set N of F is defined to be the set of points x ~ M where F(x)= 0. The unique continuation theorem \[1\] states that F never vanishes to infinite order. This places strong restrictions on the zeroes of F. By developing the machinery of Aronszajn \[1\], we establish a number of quantitative results concerning the nodal set. These theorems eem most interesting for large 2. One of our main conclusions is Theorem 1.1, The eigenfunction F vanishes at most to order c\[//2, for any point in M. When M is two dimensional, it follows from the work of Cheng \[5\], that F vanishes at most to order c2.

  • max lf

  • main theme

  • norm off

  • analytic metrics

  • yau has

  • fk can

  • 2 max

  • now give


Voir Alternate Text

Publié par

Nombre de lectures

36

Langue

English

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text