Notes by R Devyatov D Fratila V Tsanov of a course taught by M Brion
24 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Notes by R Devyatov D Fratila V Tsanov of a course taught by M Brion

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
24 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Doctorat, Bac+8
SPHERICAL VARIETIES ——— Notes by R. Devyatov, D. Fratila, V. Tsanov of a course taught by M. Brion ——– Contents 1. Introduction 1 2. Homogeneous spaces 2 2.1. Homogeneous bundles 3 3. Log homogeneous varieties 6 3.1. Criteria for log homogeneity 8 3.2. The Albanese morphism 10 3.3. The Tits morphism 12 4. Local structure of log homogeneous varieties 13 5. Spherical varieties and classical homogeneous spaces 16 References 23 1. Introduction The present constitutes the lecture notes from a mini course at the Summer School ”Structures in Lie Representation Theory” from Bre- men in August 2009. The aim of these lectures is to describe algebraic varieties on which an algebraic group acts and the orbit structure is simple. The methods that will be used come from algebraic geometry, and representation theory of Lie algebras and algebraic groups. We begin by presenting fundamental results on homogeneous vari- eties under (possibly non-linear) algebraic groups. Then we turn to the class of log homogeneous varieties, recently introduced in [7] and studied further in [8]; here the orbits are the strata defined by a divisor with normal crossings. In particular, we discuss the close relation- ship between log homogeneous varieties and spherical varieties, and we survey classical examples of spherical homogeneous spaces and their equivariant completions. 1

  • homogeneous spaces

  • group

  • trivial bundle

  • bundle tg

  • ?? gaff ??

  • any connected algebraic

  • spherical varieties

  • lie group


Sujets

Informations

Publié par
Nombre de lectures 8
Langue English

Exrait

SPHERICALVARIETIESNotesbyR.Devyatov,D.Fratila,V.TsanovofacoursetaughtbyM.BrionContents1.Introduction2.Homogeneousspaces2.1.Homogeneousbundles3.Loghomogeneousvarieties3.1.Criteriaforloghomogeneity3.2.TheAlbanesemorphism3.3.TheTitsmorphism4.Localstructureofloghomogeneousvarieties5.SphericalvarietiesandclassicalhomogeneousspacesReferences1236801213161321.IntroductionThepresentconstitutesthelecturenotesfromaminicourseattheSummerSchool”StructuresinLieRepresentationTheory”fromBre-meninAugust2009.Theaimoftheselecturesistodescribealgebraicvarietiesonwhichanalgebraicgroupactsandtheorbitstructureissimple.Themethodsthatwillbeusedcomefromalgebraicgeometry,andrepresentationtheoryofLiealgebrasandalgebraicgroups.Webeginbypresentingfundamentalresultsonhomogeneousvari-etiesunder(possiblynon-linear)algebraicgroups.Thenweturntotheclassofloghomogeneousvarieties,recentlyintroducedin[7]andstudiedfurtherin[8];heretheorbitsarethestratadefinedbyadivisorwithnormalcrossings.Inparticular,wediscussthecloserelation-shipbetweenloghomogeneousvarietiesandsphericalvarieties,andwesurveyclassicalexamplesofsphericalhomogeneousspacesandtheirequivariantcompletions.1
22.HomogeneousspacesLetGbeaconnectedalgebraicgroupoverCandg=TeGtheLiealgebraofG.Definition.AG-varietyisanalgebraicvarietyXwithaG-actionG×XX,(g,x)7→gxwhichisamorphismofalgebraicvarieties.IfXisaG-varietythentheLiealgebraofGactsasvectorfieldsonX.IfXissmoothwedenotebyTXthetangentsheafandwehaveahomomorphismofLiealgebrasopX:g−→Γ(X,TX),andatthelevelofsheavesopX:OXg−→TX.Examples:1)Linearalgebraicgroups:G,GLn(C)closed.2)Abelianvarieties,thatis,completeconnectedalgebraicgroups.E.g.ellipticcurves.Suchgroupsarealwayscommutativeaswillbeshownbelow.3)Adjointaction:considertheactionofGonitselfbyconjugation.TheidentityeGisafixedpoint,andsoGactsonTeG=g.WeobtaintheadjointrepresentationAd:G−→GL(g)whoseimageiscalledtheadjointgroup;itskernelisthecenterZ(G).ThedifferentialofAdisad:g−→gl(g),givenbyad(x)(y)=[x,y].Definition.AG-varietyXiscalledhomogeneousifGactstransitively.LetXbeahomogeneousG-variety.ChooseapointxXandconsiderGx=StabG(x)thestabilizerofxinG.ThenGxisaclosedsubgroupofG,sincethisisthefiberatxoftheorbitmapGX,g7→gx.Moreover,thismapfactorsthroughanisomorphismofG-varietiesX=G/Gx.Weactuallyhavemorethanthat,sincethecosetspacehasadistinguishedpoint,namelyeGx.WehaveanisomorphismofG-varietieswithabasepoint(G/Gx,eGx)(X,x).NotethateveryhomogeneousvarietyXissmooth,andthemorphismopXissurjective.Lemma2.1.(i)LetXbeaG-variety,whereGactsfaithfully,andxX.ThenGxislinear.(ii)LetZ(G)denotethecenterofG.ThenG/Z(G)islinear.(iii)Abelianvarietiesarecommutativegroups.
  • Accueil Accueil
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • BD BD
  • Documents Documents