Optimality conditions for shape and topology optimization subject to a cone constraint
20 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Optimality conditions for shape and topology optimization subject to a cone constraint

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
20 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Doctorat, Bac+8
OPTIMALITY CONDITIONS FOR SHAPE AND TOPOLOGY OPTIMIZATION SUBJECT TO A CONE CONSTRAINT SAMUEL AMSTUTZ AND MARC CILIGOTTRAVAIN Abstra t. This paper provides rst order ne essary optimality onditions for simultaneous shape and topology optimization subje t to a one onstraint. These onditions are expressed with the help of the shape and topologi al derivatives of the obje tive and onstraint fun tionals. Several examples of appli ations are given. 1. Introdu tion The lassi al theory of shape optimization onsists in analyzing the behavior of a shape fun - tional with respe t to a small deformation of the domain, where ea h point moves along a dire tion represented by a displa ement eld [20, 24, 30?. In the formulation of [20, 24?, the shape deriva- tive is dened as a Fré het derivative, whi h allows to re ast, at least lo ally, shape optimization problems as dierentiable optimization problems. Therefore, optimality onditions an be derived straightforwardly by applying general results of nonlinear programming in Bana h spa es. Unfor- tunately, this approa h does not apply any more when one wants to allow topology variations. In fa t, in this ontext, the set of attainable domains annot be equipped with a stru ture of ve tor spa e in a natural and onvenient way.

  • fritz-john multipliers whi

  • lassi al

  • optimality ondition

  • ?? ?

  • perturbation

  • tion ?

  • shape optimization

  • simultaneous shape

  • lagrange multipliers

  • dire tional


Sujets

Informations

Publié par
Nombre de lectures 11
Langue English

Extrait

O
P
T
to
eral
erturbations.
I
to
M
for
A
guaran
LIT
top
Y
the
CON
y
DITION
dimension.
S
,
F
o
O
S
R
The
S
[4
HAP
is
E
optimalit
AND
ativ
TOPOLO

GY
suitable
OPTIMI
treated
ZA
set
TION
existence
S
n
U
v
B
Q
JECT
Lagrange
TO
of
A
n
CONE
,
CONSTRAINT
top
S

A
,
M
e
U
the
E
w
L
ogy
AMS
k
TUT
ob
Z
ultaneous
A
appropriate
N
the
D

MA
y
R
m
C
t
C
y
ILI
erturbations
G

OT
a
TRA
ati
V
r
AIN
top
Ab
ological
s
analyze
t
functional
r
erturbations,
a
holes

6
.
2
T
nonnegativit
h
e
i

s
the
p
algorithms
ap

e
the
r
y
pr
b
o
the
vi
In
des
estigate
rs
e
t
e
order
in
ne


t
y

opti
resp
ma
top
lit
w
y
problem

of
for
theory
sim
v
ultaneous
of
shap
alues
e
is
and
of
top
in
olo
ultipliers
gy
t
optimi

zation
out
su
of
b


at
to
ecial
a
This

mat


t
4
.
J05.
These
ases.

e
are
e,
e
of
xpressed
ativ
with
is
the
sensitivit
help
shap
of
resp
the
ology
shap
ypically
e
of
and
the
top
5,
ological
1
deriv
25
ativ

es
situation,
of
of
the
deriv
ob
the

ob
e
it
and
h

of
t
ology
functionals.
,
Sev
,
eral
top
examples

of

applications
ted
are

giv
at
en.
,
1
anishing
.
e
I
[29
n

t
in
r

o
ultaneous
d
top
u
erturbations.

rst
ion
y
T
framew
h
a
e
of


l
that
a
e
ss
functionals
ical
expansions
the
to
o
e
r
ogy
y
e
o
through
f
ulation,
sha
b
p
the
e
adaptation
opti
nonlinear
mi
More
zatio
e
n
that

exit
in
tangen
analyzin
the
g
en
the
precited
b
t
eha
the
vior
ritz-
of
whic
a
yields
shap
Lagrange
e
a
f
e


-
erify
tional
ex-
with
it
resp
a
ect
b
to
ology
a
arbitrary
small
v
deformation
e
of
same
the
the
domain
of
,

where
000

h
h

p
b
oin
lassi
t
n
mo
K20
v
3
es
y
along
and
a
e

optimization,
represen
ativ
ted
deriv
b
y
y
ultiplier.
a
top

deriv
t
e.
eld

[
to
2
the
0
y
,
the
2
e
4
with
,
ect
30
top

p
In
t
the
the
form
ucleation
ulation
small
of
in
[20
domain
,
,

1
the
,
shap
7
e
19,
deriv
,
a-
8
tiv
In
e

is
the
dened
y
as
the
a
ological
F
ativ
r
in
?c
domain
het
an
deriv
vious
ativ
optimal-
e,
y
whic
whic
h
forms
allo
basis
ws
sev
to
top

optimization
at
[7
least
13
lo
19

26
,
This
shap
ological
e
y
optimization
inside
problems
domain
as
b
di

eren
b
tiable
the
optimization
optimalit
problems.

Therefore,
the
optimalit
oundary
y
namely

v

of
b
shap
e
deriv
deriv
e
ed

straigh
this
tforw
tribution,
ardly
e
b
v
y
the
applying
situation
general
sim
results
shap
of
and
nonlinear
ol-
programming
p
in
W

establish
h
order
spaces.
optimalit
Unfor-

tunately
the
,
or
this
of


h
t
do
arbitrary
es
The
not
requiremen
apply
is
an
the
y

more
and
when
t
one
admit
w
asymptotic
an
with
ts
ect
to
sim
allo
shap
w
and
top
ol-
ology
p
v
W
ariations.
sho
In
that,

an
in
form
this
the


te
e
xt,
with
the
help
set
an
of
of
attainable

domains
programming

.
b
precisely
e
w
e
pro
quipp
e
ed
the
with
v
a
y

some
of
t
v
to
ector
v
space
tak
in
b
a
the
natural
functionals
and
sucien

to
v
tee
enien
existence
t
F
w
John
a
ultipliers
y
h,
.
turn,
In
the
order
of
to
m
b
under
ypass
Slater
this
yp
di

cult

y
T
and
v
still
this

v
top
it
ol-
assumption,
ogy
turns
optimization
that
algorithms,
nite
most
um
authors
er
use
top
relaxation
p
metho
at
ds
lo
[2,
ha
9
e
,
b
10

,
the
12,
time,
1
in
5
sp


Ho
the
w
olume
ev
t.
er,
2
this
M
p
t
oin
e
t
i
of
s
view
u

je
hardly
C
lead
c
to
o
optimalit
.
y
9

,49
for
10,
the
5
non-relaxed
Ke
problem.
wo
Here,
ds
w
phr
e
shap
follo
optimization,
w
ology
another
shap

deriv
h
e,
whic
ological
h
ativ
relies
optimalit
on

the
m
notion
1E Y
K Y

E →R, E →Y,
J = G =
Ω →J(Ω), Ω →G(Ω).
P MinimizeJ(Ω) G(Ω)∈−K.
Ω∈E
Ω∈E Ω ξ : [0,τ ]→Eξ
τ > 0 ξ(0) = Ω ξ(t) = Ω t∈ [0,τ ] ξξ ξ
Per(Ω) Ω Per(Ω)
0 Ω Per(Ω) G(Ω)∈−K
∀ξ∈Per(Ω), ∃τ ∈ (0,τ ] ∀t∈ [0,τ], G(ξ(t))∈−K ⇒J(ξ(t))≥J(Ω).ξ
ξ Ω F :E → Z
Z Ω ξ F ◦ξ
F Ω ξ
′ ′F (Ω,ξ) = (F ◦ξ) (0).
F Ω ξ
′F(ξ(t)) =F(Ω)+tF (Ω,ξ)+o(t) ∀t∈ [0,τ ],ξ
o(t)
lim = 0 F Per(Ω) Ft→0 t
ξ∈Per(Ω)
third
example,
b
t
a
whic
also
h
of
in
e
v
expansion
olv
When
es
b
a
to
p
is
oin
these
t
resulting
wise
giv
state


e
t,
w
is
t
studied
of
in
the

as
6.
Let
In
.
this
zero

that
the
loads,
needed
additivit
sensitivit
resp
y
xpansion
form
Let
ulas
function
are
space,
kno

wn
in
[1
e
8
is

of
2.
o
A
with
n
e
a
is
b
sa
s
p
t
[
ra
p

that
r
tains
es
h
u
W
l

t
if
As
and
said
y
in
pro
the

in
a
tro
t

dimensional,
the
deri
standard
a
theory
sa
of
[
mathematical
top
programming
entiable
do

es
tiable
not
deri
apply
dir

obtained
to
top
top
In
ological
the
shap
vior
e
requires
optimization
But
problems.<

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents