background image

Tra c flow modelling with junctions

22

pages

English

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

22

pages

English

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Doctorat, Bac+8Tra?c flow modelling with junctions. Magali Mercier ? September 9, 2008 Abstract Motivated by the modelling of a roundabout, we are led to study the tra?c on a road with points of entry and exit. In this note, we would like to describe the modellisation of a junction and solve the Riemann problem for such a model. More precisely, between each point of discontinuity we use a multi-class extension of the LWR model to describe the evolution of the density of the vehicles, the multi-class' approach being used in order to distinguish the vehicles after their origin and destination. Then, we treat the points of entry and exit thanks to special boundary conditions that give bounds on the flows of the di?erent types of vehicles. In the case of the one-T road we obtain a result of existence and uniqueness. This first step allows us to obtain a similar result for the n-T road. We describe these results and also some properties of the obtained solutions, in order to see how long this model is valid. 2000 Mathematics Subject Classification: 35L65, 90B20 Key words and phrases: Hyperbolic Systems of Conservation Laws, Continuum tra?c flow model, Riemann problem. 1 Introduction. Tra?c modelling, in particular from a macroscopic point of view has been intensively investi- gated since the seminal paper by Lighthill & Withham [15] and Richards [17], see for example [16], [10].rc ? let ?1 ?1 first tra?c flow bardos-leroux-nédélec ones distributed points periodically continuum tra?c ?1
Voir icon arrow

Publié par

Langue

English


r(t;x)
@ r+@ (rv(r))=0;t x
v
v ‰a
@ ‰ +@ (‰ v(r))=0t a x a

thetsaloforen,trytandthatexit.exitInfact,thisesnote,Univwinniteeewhouldthelikbedel,toedescribypeSeptemtheesses:moratherdellisationtryoftheaherejunctiondelandosolvyedenotedtheout,Riemannaproblemmforehiclessucdistinctionhlaabmothedel.pMorewpreciselyBranze,wbeetroundabwoineenerioeacdherimeter.panointhetpreciselyoftrodisconwtinofuitgoymowofetheuseequation:adellingm(1.1)ulti-classeedextensionratherofthethedierenLtheyWRgoingmowdelthetoalldescribFinallyeytheehicle,evholutioneenofdiscontheMagalidensitDipartimenyStudiofItaliathemercier.magali@ing.unibs.itvseeehicles,Here,thean`mconsiderulti-class'asapproacwithhofbexiteingdistributed,usedpinondsorderout'stoparticular,distinguishnotthetovtracehiclesofafterexit.theirtheorigineandisdestination.bThen,twoinetrytreattractheernedpLoinsotsdensitofvenytrytoanderiesexitethanksatothespMotivecial2008benoundaryw.conditionsethatheregivextensioneWRbinoundstheonthethefromotheywsAsofquitethehadierengivtspt9,yptesvofifvtheehicles.oneInofthevcasewingofentheetone-TwroadtswuiteMercierobtainparacresultdiofsit?existenceBrescia,and25123uniqueness.E-mailThislyrstnetsteporks,allo[11]ws[6].uswtowobtaintatosimilararesultoutforantheroadn-Tproad.tsWeneanddescribpedicallythesesoresultsaanderioalsocorrespsometoproproundabertiespofInthewobtaineddosolutions,wintorderstudytotheseeonhoroadswarrivlongandthisMoremo,delmoiswvinalid.duce2000sucMathematicsthatSubjeetcteenClassicwation:p35L65,ts90B20enKeyandworthedsisandvphrbases:theHypWRerbdel,olicthatSystemstotalofyConservtheationehicles,Labws,tracConstudytinleduumvtractheoarewwmoroundabdel,ofRiemannmoproblem.y1atedInAbstracttrowhereduction.isTgivracspmoladelling,Ininwparticularwillfromconsideraamacroscopiculti-classpofoinLtmoofasview[14],hastiatingbveenafterinplacetensivcomeelyandinplacevareesti-to.gatedthissinceisthearticial,seminalepapvertobeysameLigheedthillw&forWithhamthe[15]ypandofRicehicles.hards,[17],erseeisfordensitexampleof[16],t[10].eThisvpapitereriesonfollooinequationoneacermanenopadress:segmenCamillebUnivwClaudetLyoI,oinbofardtin11y:vroadbreawithjunctions.withF-69622dellingCedex,moranceoTToraryisPmotivtatedInstitutbJordan,yersit?theBernardmoondelling43,ofoulevroundabduouts.noSomeem-pap1918,ersVilleurbannehaFv-eempal-address:readytotacMatematica,kleder-thisdegliproblemdibViay38,consideringBrescia,the-roundabaddroutsmercier@math.univ-ason1.fr,sp1eciala
.
1
2 3
.
‰ ‰1 2
‰3
‰ ‰1 2
‰3
n
0;1v : [0;1]!R C+
r =1
0;1C R+
[0;+1)
q :[r7!rv(r)] q r =r 2]0;1[c c
?: [0;1]7![0;1]
rv(r)=?(r)v(?(r))
?(r)=r r =rc
pteringeedorofexiting.andWeeThewilldenoterst2.treatexistencetheincaseproofthetheb`one-Tasroad'maxim(seeconFigurefor1),structuredandandthendetailsgluewtheofsolutionswobtainedvforoeacathconpinoinist[2],ofoundaryenaretryandandonexitThis(ininorderpreciselytoeobtaineaofloandcaltheingeneraltimeandsolution).hThefolloideaw:areerehiclesehicleswhicrdecreasingv.rbthehitzroadalFigureo1:givAe`T-road'.atisfromthat,eattooneuniquelypenoinequationterofbentimetrytheanderexit,follow2,eecanmodierenetiateprincipalthree3,teyptheestheof`one-TvSectionehicles:givtheofvinehicles2thatmogoresults.straighjunction.t,otheses.ofassumedensitconditionsyeedsecondaryAlltheha,samethewvofehiclesonthatisareconsistabvout[7]:towexitandthesetroad,uousofanddensitinytheof(F)yw,asandconditionstheconcavattainsehiclesbthatChapt.haBardos-Leroux-N?d?lecvseeew,eninspiredteredecialthetreatedroad,uousofbdensitandytscapacitBesides,there-nd.,Thenvw6eoundrequirethethat,ofacrossofthesolution.ppapoinistasofw:disconSectiontinwuitdescribymore,thethedelowwgivofourtoresults;ondingSectioniswconservgived,thetheofoprowinofcasecorrespthetroad';isinless4,thanesomeeprescribdetailsedtheoutputoffunction,theandcase.theDescriptionothewdelsofmainconstrain2.1a`one-T'isGenerallessypthanThroughout,someeprescribtheedwinginputonfunction.spWlae(V)obtaintheinehiclesthisvwtheaspylaaanduniquevwwseaktheen,trophyoundssolution.inIn,orderandtoanishestreattheythe.GoatineHere-Tecase,PwoethehaofvtineLipsconlyfunctionstoR.Colomcollatethegivtervenideassame2factsolutions.atTheeacwhfollopinequalitiesoinentareofoundarydisconstrictlytinvuitandyits,umtheThesenite15].propagation[19,sponeseedtheallo,wingFigureinBelothiswcasedenotetoconditions,obtainbaspuniquethankslothecaltininmaptimedenedwyeakexitentrytropofyoinsolution.theW(1.1).ethecanealsowgivalle6aolosummationwByerthe.local.
q( )
qc
q(r)
(r) rO r 1c .
v(r)=V (1¡r):m
q(r)=V r(1¡r) r =1=2 q =V =4 ?(r)=1¡rm c c m
‰1
‰ ‰2 3
r!v(r)
‰ ‰
@ ‰ +@ (‰ v(‰ +‰ )) = 0 @ ‰ +@ (‰ v(‰ +‰ )) = 0t 1 x 1 1 2 t 1 x 1 1 3x<0; x>0:
@ ‰ +@ (‰ v(‰ +‰ )) = 0 @ ‰ +@ (‰ v(‰ +‰ )) = 0t 2 x 2 1 2 t 3 x 3 1 3
‰ (0;x) = ‰ (x) x2R1 1;0
‰ (0;x) = ‰ (x) x<02 2;0
‰ (0;x) = ‰ (x) x>0;3 3;0
‰ v(‰ +‰ )(t;0¡) = ‰ v(‰ +‰ )(t;0+) ;1 1 2 1 1 3
‰ v(‰ +‰ )(t;0¡) • o(t) ;2 1 2
‰ v(‰ +‰ )(t;0+) • i(t) ;3 1 3
+o i R
‰ ‰ ‰1 2 3
‰1
‰ ‰2 3
‰ ‰ ‰2 1 3
t,articularthatPw.theyeingdensitowdisconokindthebforediagramthetalandundamenconservFw2:theforectivFigureasorout,rareemothemaxdensiteymaximised.ofofthepp,opulation(respthatbneithertheenisterstnorvforotherwise,exitstotherst.road,casethehoforthedensitroad.yoofrst,thebpthatopulationofthathaexits,andconditionstheodensitandyacrossfortsofuitthethep.opulationely(2.3)mandlesstheyfolloroadwingv`bteringoundary'exiting).conditions,pthatecantobyewillcomparedpwithwhictheisonesgoalgivtreatenaine[7],towhereyaehiclestoll-gateonismeansconsidered:maximisethatofendel.ters.onlyAssumingwthatequations,themeansbtheehawsviourwof,drivvers,emoaredelledThesebsignifyythethewsp,eedislaedwthe,oinisofindeptinendenyws:whereaslaomaxofationDescriptionconservectivcaloflo)theusttoedata:thanledcapacitareofinitialsecondaryethiswofdestination,ehiclestheirenand(resporiginelytheirAoththisboinfromwmaxhatetheaddaddprioriterule;witurthermore,notFe(2.2)ossiblecase.decideFhorwamaximisedforOurconcretebexample,towtheeofmaroundabmaxwyctakose.giveprioritandtoInvarethatsomealreadyprescribtheedThisoutputthatandeinputthefunctionswstaking`one-T'vandaluesLetinandthisaftercase,o.ofInthese(2.4)3where‰ ‰1 2
t=0
o;i2BV ([0;+1);[0;q ])c
‰ 2BV (R;[0;1]); ‰ 2BV ((¡1;0);[0;1]); ‰ 2BV ((0;+1);[0;1])1 2 3
(‰ ;‰ ) (t;x)2[0;+1)£(¡1;0)1 2
(‰ ;‰ ) (t;x)2[0;+1)£(0;+1)1 3
x2R ‰ ;‰ ;‰ t=01 2 3
t>0 ‰ ;‰ ;‰ x=01 2 3
' “
2S = ‰=(‰;‰~)2R : ‰‚0; ‰~‚0; ‰+‰~•1
i‚ 0 o‚ 0
¡ ¡‰ (0;x) = ‰ x 2 (¡1;0) ‰ (0;x) = ‰ x 2 (¡1;0)1 21 2
+ +‰ (0;x) = ‰ x 2 [0;+1) ‰ (0;x) = ‰ x 2 (0;+1)1 31 3
o > 0 i > 0 T =f(‰ ;‰ )2S;a•a;b 1 2
‰ +‰ •bg a‚0 b•11 2
S
o2 [";1] " > 0 ‰2 T b < 1 T0;b 0;b
‰ = 0 t = 0 ‰ (t;x) = 0 t x1 1
i· 0 ‰ = 0 ‰ = 0 t = 0 ‰ (t;x) = ‰ (t;x) = 0 t2 3 2 3
x ‰1
¡ +o;‰ ! 0 r ! 1
2
¡‰ ! 01
+o = 0 r = 1
+ ¡o=0 r =1 ‰ >02
¡‰ > 01
¡ ¡‰ = 0 ‰ = 02 1
2.2i.e.wildata,einitialtheonstantsolutionccanwithonandIfoutow,densitiestheLandandinowisthewillforifandforvaluessolutionoundarydensitiesfortrbandonstantWhitham'scearwithept(2.4)whenin(2.3)the(2.5)theIn(respthiselycase,increaseforteractwene,obtainetthethenfollothewingforresult:haveTheoremconserv2.4vUnderasthe[21].hypdisconotheseswher(V)spandr(R)ely,vthecorrespRectiviemannbprleft-sideoblemonehiclesforIncasethenowsproblemmaximisefromobviousbloonkwhereasroadectivsimplynotandthoseparticularRemarkens.triplein(2.2)(2.3)(2.4)theAsenseatofDenitions.thesimultaneDenitionof2.2.timeFnulurthermoree,whilewhenthe(2.2)aanlamee,thewemo(2.2)(2.3)(2.4)osedforo,etherthateuitiesexistswesomecinvariantwhensetinproblemthat,RiemannWBythis2.3folloDenitionroad.canw(whicelotob,denoteturne),Wviour.on(2.4)thesatisfyendinpresenceofofestoacjammedtrinthe,,elya.e.timeforthe,(respforwe4.).densit(2.3)leftsmaltolpriorienoughItand2.1satisfydoininofwithlarwhogeter.enough.2.6OnofesatheisRtoiemannandsolver.forLthetimecDenitiononsider,eous.disprtheseoblemmaximisationis,notatclontinuous.atHowever,allitandis,ctoontinuousisonusualsometosubset:scalarforationacw,trwthereco,era.e.classicalwithWRfordel,3.exp;inandbforok(2.3)Wtoobservsolutionhereysome,tinwithapptropwheneneeakases(cialwalsoaeistheb,eingexcanesolutioninvariant.set),etheexplainsolutionqualitativisasobtainew:dacwhereontinuously.ehiclesQualitativgoejammedpropherties.ondsRemarkthe2.5outIfresp2.ely;lforit(2.2)theatehatimeoftotracsolutiontheyof,roadthendeptropdramaticallyentheeakorwabsenceaviswilling1.gothatthisforroad.allfact,suchtheandbutfunctionsandandectiv(2.2)(2.3)(2.4)ofdecouplesthein),tsamewatoanindepectivendenctthatIBVPs.notFthenromtotaltheytracthepwilloinabruptlyt1;ofifview,aitismeans(respthatelythoseRemarkwhoexitfor)(2.2)thearising(2.3)thec(2.4)edis(2.5)ignoredadmitsnothingahappunique4solutionn
n n 2N n < 1
x 2R k 2 J1;nK x < x < x < :::k k¡1 k k+1
n+1 ‰i;j
i j
2n+1 (n+1) (‰ )i;j i2J0;nK;j2J1;n+1K
.
xx x x x1 i j n
i, j
0 n+ 1
1 i j n .
n
+ ¡x x R

Voir icon more
Alternate Text