REDUCIBLE FIBERS OF POLYNOMIALS

icon

3

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

3

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

REDUCIBLE FIBERS OF POLYNOMIALS ARNAUD BODIN Abstract. We give an algorithm to find reducible fibers of a bi- variate polynomial. 1. Ruppert's equation, Gao's theorem Let F be any field of characteristic p. Let f ? F[x, y]. The aim of this note is to give a method to find the values c for which f ? c is reducible based on results of W. Ruppert and S. Gao, [Ru], [Ga]. We consider the following equation : (1) ∂ ∂y ( g f ? c ) = ∂ ∂x ( h f ? c ) , where g, h ? F[x, y] are unknows and f ? F[x, y], c ? F are given data. This equation can be “linearized” to the equivalent equation: (2) (f ? c) · ( ∂g ∂y ? ∂h ∂x ) = g · ∂f ∂y ? h · ∂f ∂x . Notice that this equation is linear in the coefficient of g and h. The bidegree of a polynomial g is deg g = (degx g, degy g). Let (m,n) be the bidgree of f . We impose the following restrictions: (3) deg g 6 (m ? 1, n), deg h 6 (m,n ? 1).

  • stein fac- torization

  • reducible fibers

  • brianc¸on polynomial

  • finding reducible

  • pq ?

  • polynomials via partial differential equations

  • equation


Voir icon arrow

Publié par

Nombre de lectures

9

Langue

English

REDUCIBLE FIBERS OF POLYNOMIALS
ARNAUD BODIN
Abstract.We give an algorithm to find reducible fibers of a bi-variate polynomial.
1.Ruppert’s equation, Gao’s theorem LetFbe any field of characteristicp. LetfF[x, yaim of]. The this note is to give a method to find the valuescfor whichfcis reducible based on results of W. Ruppert and S. Gao, [Ru], [Ga]. We consider the following equation :    ∂ g∂ h (1) =, ∂y ffc ∂xc whereg, hF[x, y] are unknows andfF[x, y],cFare given data. This equation can be “linearized” to the equivalent equation:   ∂g ∂h∂f ∂f (2) (fc)∙ −=g∙ −h. ∂y ∂x∂y ∂x Notice that this equation is linear in the coefficient ofgandh. Thebidegreeof a polynomialgis degg= (degg,degg). Let(m, n) x y be the bidgree off. Weimpose the following restrictions: (3) degg6(m1, n),degh6(m, n1). The relation degg6(m1, n) means degg6m1 and degg6n. x y Note that relations (3) define a finite dimensional vector space for the coefficients ofgandh. We suppose thatfis not constant and that for allcF, gcd(f∂f c,Then for each) = 1.gthere is at most onehthat satisfies (2) and ∂x (3). Wedefine G={gF[x, y]|(2) and (3) holds for somehF[x, y]}. Gis a finite dimensional vector space and is at least one dimensional ∂f ∂f becauseg=G(forh= ). ∂x ∂y
Date: September 27, 2005.
1
Voir icon more
Alternate Text