SMOOTHNESS OF OPTIMAL TRANSPORT

icon

34

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

34

pages

icon

English

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

SMOOTHNESS OF OPTIMAL TRANSPORT IN CURVED GEOMETRY Videoseminaire, October 9, 2008 Cedric Villani ENS Lyon & Institut Universitaire de France

  • has been

  • fluid mechanics

  • finslerian geometry

  • optimal transport

  • deblais remblais

  • monge–kantorovich problem

  • main themes


Voir Alternate Text

Publié par

Nombre de lectures

12

Langue

English

SMOOTHNESS
OFOPTIMALTRANSPORT
INCURVEDGEOMETRY
Vid´eos´eminaire, October 9, 2008
C´edric Villani
ENS Lyon
& Institut Universitaire de FranceMAINTHEMES
• In the optimal transport problem, smoothness and
geometry are mixed in an inextricable way
• Gives rise to progress in “nonsmooth” geometry
• Provides a “soft” tool to attack “hard problems”Optimal transport (Monge–Kantorovich problem)
μ(dx), ν(dy), c(x,y) given
Z
inf c(x,T(x))μ(dx)
T ¹=ν
#
−1
T μ[A] = μ[T (A)]
#
T
x
y ν
μ
remblais
d´eblais
Given the initial and final distributions, transport
matter at lowest possible costO.T. has been exploding in the past 20 years:
• modelling in economics, meteorology, ...
• fluid mechanics
• linear and nonlinear diffusion equations
• concentration of measure
• (optimal) Sobolev inequalities
• Riemannian and Finslerian geometry
• ...
Ref: Optimal Transport, old and new
(Grundlehren to appear)Which cost function?
It depends.!
Some noticeable cost functions 973
cost setting what use where quoted
2 3|x! y| R orR Monge’s original cost function [15, 606]
shape optimization, sandpile growth, compression molding [315]
d(x,y) Polish space Kantorovich’s cost function [482]
definition of Kantorovich distance/norm Chapter 6
1 Polish space representation of total variation [783, Appendix 1.4]x=y
1 Polish space Strassen’s duality theorem [783, Appendix 1.4]d(x,y)"!
pd(x,y) Polish space p-Wasserstein distances Chapter 6
2 n|x! y| R Tanaka’s study of Boltzmann equation [746] [783, Section 7.5]
Brenier’s study of incompressible fluids [18, 145, 147, 150] [783, Section 3.2]
nmost useful for geometric applications inR [783, Chapter 6]
di!usion equations of Fokker–Planck type [474, 639, 641]
semi-geostrophic equations [256]
2!log(1! x · y) S Far-field reflector antenna design [402, 801]
2!log(1!!(x) · y) x" surface, y " S Near-field reflector antenna design [630]
nlog#x,y$ S prescribed integral curvature problem [629]+
n!log |x! y| R (flat) conformal geometry [499, 757]
!
321! 1! |x! y| R relativistic theory [155]
2R Rubinstein–Wolansky’s design of lens [681]
!
321 + |x! y| R relativistic heat equation [32, 33, 155]
2 2(x ! y ) + (x ! y )1 1 2 2 3R semi-geostrophic equations [255]
f(x ! y )3 3
erf("|x! y|) R Hsu–Sturm’s maximal coupling of Brownian paths [466]
" 2|x! y| ,0 < # < 1 R orR modelling in economy [383]
2d(x,y) Riemannian manifold Riemannian geometry [235, 587] and Part II
"
2min(d(x ,y ),d(x ,y ) ) product metric space Talagrand’s study of exponential concentration [743] and Chapter 22i i i ii
#
inf L(x,v,t)dt Riemannian manifold Mather’s theory of Lagrangian mechanics [95, 96, 574] and Chapter 8
# 2|v| ninf ( ! p(t,x))dt subset ofR incompressible Euler equation [18, 19, 146]
2#
1 2inf (|v| + Scal(t,x))dt Riemannian manifold Study of Ricci flow [550, 751]2
2d(x,y) geodesic space Lott–Sturm–Villani’s nonsmooth Ricci curvature bounds [551, 732, 733] and Part IIIWhich cost function?
It depends.
In many cases, the quadratic cost function
2
d(x,y)
c(x,y) =
2
d = geodesic distance
Use in Riemannian geometry goes back to Otto–V (2000)
In the sequel, stick to that cost.Illustration: Two “external” results
• (M ,g ) compact manifolds with Ric≥ 0, converging
k k
in weak sense [measured Gromov–Hausdorff] to (M,g); then
(M,g) also has Ric≥ 0
(Lott–Sturm–V.)
n
• k¢k a norm on R ,
Z
n−1
|A| = λ [A], |∂A| = kσ k H (dx), then
n x ∗
∂A
( Ã !)
µ ¶
2
|ΩΔB|
|∂Ω|≥ inf |∂B| 1+const.
|B|=|Ω| |Ω|
(Figalli–Fusco–Maggi–Pratelli)Regularity mystery
Up to recently, nothing was known about regularity of
optimal transport, apart from Euclidean case (Caffarelli,
Urbas)
=⇒ Whole theory built with nonsmooth analysis, relying
only on regularity of (semi)convex functions.Example: O.T. on Riemannian manifold
(M,g) a compact Riemannian manifold
exp the Riemannian exponential: Let x∈ M, v∈ T M,
x
start a constant-speed geodesic from x with velocity v,
then exp v = position at time 1
x
2
Let μ(dx) = f(x)vol(dx), ν(dy), c(x,y) = d(x,y)
McCann: T = exp(∇ψ)
opt
ψ is c-convex, i.e. ∃ζ s.t.
³ ´
ψ(x) = sup ζ(y)−c(x,y) .
y∈M
In particular, ψ is semiconvex.

Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text