La lecture à portée de main
2
pages
Français
Documents
Écrit par
David Delaunay Http://Mpsiddl.Free.Fr
Publié par
analyse-mpsi
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
2
pages
Français
Ebook
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Nombre de lectures
27
Licence :
Langue
Français
Publié par
Nombre de lectures
27
Licence :
Langue
Français
1.
2.
2.a
2.b
3.
4.
1.
2.
2.a
2.b
2.c
2.d
3.
4.a
4.b
4.c
Etude d’une famille de fonctions
Partie I : Une fonction
Résoudre l’équation différentielle (1+2)+′2=0 .
On introduit la fonctionϕ:ℝ→ℝdéfinie parϕ()=1+12et on note (Γ) la courbe d’équation
=ϕ() .
Dresser le tableau de variation de la fonctionϕ.
Pour quelle valeur de≥0 , la dérivée seconde deϕs’annule-t-elle en changeant de signe ? Préciser la
position relative de la courbe (Γ de sa tangente) et () au point correspondant.
Représenter la courbe (Γ) accompagnée ( de choisissant une unité égale à 2cm.) en
1
Calculer l’intégrale (.
0ϕ)
Partie II : Une famille de fonctions
Intégrer l’équation différentielle :
() :+′=1+1
2
sur−∞, 0 sur et 0,+∞.
Soitλun nombre réel.
On appelleλla fonction définie pournon nul par :
( )λ+arctan
=
λ
On note (λ) la courbe d’équation=λ() .
Montrer que0admet en 0 une limite finieℓqu’on déterminera.
On pose désormais0(0)=ℓ. Dresser le tableau de variation de0.
Observer que les courbes (λ) et (−λ correspondent dans une transformation géométrique simple.) se
Soitλ1<λ2. Quelle est la position de (λ2 () par rapport àλ1) ?
On supposeλ>0 . Exprimerλ′( la forme :) sous
λ′()=12λ()
Former, selon les cas possibles, le tableau de signe de la fonctionλ.
(on ne cherchera pas à exprimer l’éventuelle valeur d’annulation deλ).
Dresser le tableau de variation deλdans chacun des cas possibles.
Tracer dans un même repère les courbes (0) et (π2) .
Montrer que par tout point d’abscisse non nulle du plan, il passe une et une seule courbe (λ)
Déterminer l’ensemble des pointsnon nulle, du plan tels que la courbe (, d’abscisse λ) passant par ce
point y ait une tangente de pente nulle.
On considère un pointd’abscisse non nulle, n’appartenant pas à (Γ) . Déterminer, selon sa position
par rapport à (Γ ( à l’axe) et) , le signe de la pente de la tangente enà la courbe (λ par) passant
ce point.
Partie III : Calcul d’une intégrale
On désire obtenir une valeur approchée de l’intégrale
=100()=∫10arctan
Cette dernière est appelée constante de Catalan.
1. Soitun entier naturel,etdes réels positifs.
1.a Etablir l’égalité :
1.b
1.c
2.
En déduire que :
2+3
avecϕ()≤2+3.
En conclure la majoration :
11(1)(1)1+12(+1)
2=∑=0−2+ −2
+ +
)1(
arctan=∑0(2−1)2+1+ϕ()
=+
−∑(−1)≤1+.
=0(2+1)2(23)2
Donner, en précisant la démarche suivie, une valeur décimale approchée deà 10−2près.