Weakly stable multi d shocks
44 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Weakly stable multi d shocks

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
44 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Weakly stable multi-d shocks Jean-Franc¸ois Coulombel April 30, 2004 UMPA, CNRS - UMR 5669, Ecole Normale Superieure de Lyon 46 allee d'Italie 69364 LYON CEDEX 07 FRANCE email: Abstract We study the linear stability of multidimensional shock waves for systems of conservation laws in the case where Majda's uniform stability condition is violated. The linearized problem is attacked using the “good unknown” of Alinhac. We prove an energy estimate and show that the solutions to the linearized problem have singularities localized along bicharacteristic curves originating from the boundary. The application to isentropic gas dynamics is detailed. Contents 1 Introduction 1 2 The constant coefficients analysis 4 2.1 The weak stability condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 The weak stability of planar shock waves . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Proof of theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 The variable coefficients analysis 16 3.1 The linearized equations . . .

  • metivier has

  • majda's nonlinear

  • been assumed

  • rankine-hugoniot conditions

  • linear stability

  • euler's equations

  • planar shock

  • space variable


Sujets

Informations

Publié par
Nombre de lectures 52
Langue English

Extrait

Weakly stable multi-dshocks
Jean-FrancoisCoulombel
April 30, 2004
UMPA, CNRS - UMR 5669, EcoleNormaleSuperieuredeLyon 46 allee d’Italie 69364 LYON CEDEX 07 FRANCE email: jfcoulom@umpa.ens-lyon.fr
Abstract We study the linear stability of multidimensional shock waves for systems of conservation laws in the case where Majda’s uniform stability condition is violated. The linearized problem is attacked using the “good unknown” of Alinhac. We prove an energy estimate and show that the solutions to the linearized problem have singularities localized along bicharacteristic curves originating from the boundary. The application to isentropic gas dynamics is detailed.
Contents
1 Introduction
2 The constant coecien ts analysis 2.1 The weak stability condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 The weak stability of planar shock waves . . . . . . . . . . . . . . . . . . . . . . . 2.3 Proof of theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
Thevariablecoecientsanalysis 3.1 The linearized equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 The paralinearized equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Geometrical assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Energy estimates near instability points . . . . . . . . . . . . . . . . . . . . . . . 3.5 Energy estimates far from instability points . . . . . . . . . . . . . . . . . . . . . 3.6 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 The example of gas dynamics
A
Paradi erentialcalculuswithaparameter
1 Introduction
1
4 6 11 12
16 17 18 22 25 32 35
37
40
In [25] and [24], Majda proved the existence of multidimensional shock waves for hyperbolic systems of conservation laws. The analysis relied on a uniform stability assumption. However, previous works [6, 13] have exhibited some examples where the uniform stability condition breaks
1
down. In [13], we have begun to extend Majda’s linear analysis to these particular examples, namelywehaveprovedanenergyestimateonaconstantcoecientslinearizedsystem.Herewe adopt a general approach and prove a complete linear stability result for a class of shock waves that are not uniformly stable. The analysis is closely related to what was done in [13]. To avoid any possible confusion, we shall not include the case of non classical shock waves in thisworkthoughthis eldhasknownasigni cantincreaseofinterestoverthepastfewyears, see e.g. [6, 7, 16, 17] and the references therein. We shall focus in this paper onmultidimenisnolahyperbolicsystems: the one-dimensional case is far di eren t from the multidimensional case since shock waves are either uniformly stable orviolentlyunstable,see[26].Thescalarcaseisalsoknowntobeverydi erentfromthesystem casesincescalarconservationlawsprovideuswithauni edtheoryofexistenceanduniqueness of solutions in the large, see e.g. [14, 34]. We consider a system ofNconservation laws in time-spaceRRd: d Xjfj(u) = 0,(1) j=0
wherex0is the time variable, also denoted bytin the sequel, (x1, . . . , xd) is the space variable andjstands for the partial derivative with respect toxj  uxes. Thef0, . . . , fdareCfunctions de ned on an open setUofRNwith values inRN jacobian matrix of. Thefjat pointuwill be denoted byAj(u). We assume that the system (1) does not consist of a single conservation law (in one or several space variables), that isN also assume that the space dimension is2. Wed2 (see the preceeding remarks). We  rst assume that (1) is a symmetric hyperbolic system of conservation laws:
Assumption 1.There exists aCmapping :U → MN(R)such that
j= 0, . . . , duU(u)Aj(u)is symmetric, KcompactUcK>0such that(u)A0(u)cKIfor alluK. Recall that assumption 1 is satis ed when there exists a strictly convex entropy, see [14, 34]. Assumption 1 is met by many physical examples such as Euler equations of gas dynamics, Maxwell equations or the wave equation. Moreover, assumption 1 is the key tool to solve the Cauchy problem associated to (1) for smooth initial data (namely in a Sobolev space of large index), see [26, 34]. Because the system has been assumed to be symmetric hyperbolic, the matrixA(u, ) de ned by the formula: d Rd, A(u, ) :=A0(u) 1XjAj(u) (2) j=1 is diagonalizable overRfor all stateuUand all wave vectorRd However,(see [34]). we shall need a little more than hyperbolicity to carry out the study of the linear stability of shock waves. In [22], the system was assumed to be strictly hyperbolic but it has been shown in [25] that a suitable “block structure condition” (that is met by strictly hyperbolic systems) is sucien t to carry out the study of initial boundary value problems and the study of the linear stability of shock waves, see also [12, 28, 30]. The block structure condition will be recalled furtherinthispaper.In[27],Metivierhasshownthattheblockstructureconditionwasmet by every hyperbolic system with constant multiplicity. We are thus naturally led to make the assumption that (1) is a system with constant multiplicity:
2
Assumption 2.There existCreal valued mappings1, . . . , qde ne d onURd\ {0}, and xedintegersm1, . . . , mqsuch that thej’s are the eigenvalues, with multiplicitymj, of the matrixA(u, )de ne d by(2) the. Furthermore,j’s satisfy uU ,Rd\ {0}, 1(u, )<  < q(u, ). We point out that assumption 2 is easily checked on the system. However, one could replace assumption 2 by the more abstract block structure condition, as was made in [25, 28].
Example: consider Euler’s equations of isentropic gas dynamics in space dimensiond: t+r (v) = 0, (t(v) +r (vv) +rp= 0, wheresdehtisnednatrofsd,uioftyethvfor the velocity,pfor the pressure. Quantities andpare linked by an equation of statep=p( equations form a nonlinear hyperbolic). Euler’s system of conservation laws. In the domain{ >0}, hyperbolicity (we mean assumption 1) amountstorequirethatthepressuresatis es c2:=ddp>0. As usual,c Underdenotes the sound speed in the uid. this condition on the pressure law, Euler’s equations are endowed with a strictly convex entropy. Moreover, the eigenvalues of the corresponding matrixA(u, ) are given by
1(u, ) =v c||with multiplicitym1= 1, 2(u, ) =vwith multiplicitym2=d 1, 3(u, ) =v+c||with multiplicitym3= 1. and therefore assumption 2 is met. We shall detail in section 4 how the general analysis of this paper applies in the context of isentropic gas dynamics.
Note that Lundquist’s equations of magnetohydrodynamics violate assumption 2. The study of shock waves in MHD is a very intricate subject due to the appearance of many “pathologies” (nonconstant multiplicity, occurrence of under- and over-compressive shocks, etc...). We refer to [10] and to the references therein for some results on this subject. Becauseofthenaturaldevelopmentsingularitiesin nitetime[4],itappearsnaturaltoseek solutions to (1) as functions that are smooth on either side of a hypersurface ofRRd. Recall the following classical result:
Proposition 1.1.Let ={xd ϕ(x0, . . . , xd 1) = 0}be a smooth hypersurface inRRd, and letube a smooth function on either side of . Thenuis a weak solution of(1)if and only ifu satis es(1)(in the classical sense) on either side of and if the Rankine-Hugoniot conditions hold at each point of :
d 1 x= (x0, . . . , xd) ,Xjϕ[fj(u)](x) [fd(u)](x) = 0, j=0
(3)
the partial derivatives ofϕin the above formula being evaluated at(x0, . . . , xd 1). In(3), we have let[fj(u)](x)denote the jump of the quantityfj(u)across the hypersurface: [fj(u)](x) :=sli0m+(fj(u(x+sn)) fj(u(x sn)))withn= ( 0ϕ, . . . , d 1ϕ,1).
3
The existence of such a solution to (1) is a free boundary problem since the functionϕ de ningthehypersurface ispartoftheunknownoftheproblem.Toovercomethis rst diculty,webeginbystraighteningthevariablesinordertoworkina xeddomain:givena smooth functionϕonRdw,vfoegnahcaen edeinesbliaarRd+1by the formula:
(x0, . . . , xd) := (x0, . . . , xd 1, xd+ϕ(x0, . . . , xd 1)). We have chosen here the standard change of variables (as in [25, 28, 30]): it maps the hyperplane {xd= 0}onto the hypersurface the two half-spaces and{xd>0} .on the two sides of Other choices for the change of variables (that may be appropriate for characteristic problems) may be found in [15]. We now perform a change of unknown functions. Ifuis a smooth function on either side of , then the functionu]de enbdy (x0, . . . , xd)Rd+1, u](x0, . . . , xd) :=u((x0, . . . , xd)) is smooth on either side of the hyperplane{xd= 0}. Denoting byu]+(respectivelyu] ) the restriction ofu]to the half-space{xd>0}(respectively{xd<0}), proposition 1.1 asserts that uis a weak solution of (1) if and only if (L(u], ϕ])u,]ϕ=0=0fifi)xdx=d0>,(4),0 B(u]+, u where operatorsLandB byare de ned the formulas: d 1 XAj(v)f5a) L(v,)w:=jw+Ad(v,r )dw( j=0 d 1 withAfd(v,r ) :=Ad(v) Xj Aj(v) (5b) j=0 d 1 B(w+, w ,) :=Xj [fj(w)] [fd(w)].(5c) j=0
Nowthatthedomainis x,theproblemreducestothefollowingquestion:givenaninitial datumu0that is smooth on either side of a hypersurface{xd=ϕ0(x1, . . . , xd 1)}, does there exist a solution (u], ϕ) of (4) with initial value (u0], ϕ0 question This), at least locally in time? has received a positive answer in [24] under the so-called uniform stability condition (we shall recall it in section 2), see [26, 35] for a description of the method. The main idea is that equations (5a)-(5c)aresatis edforplanarshocksandthelinearuniformstabilityofthesetrivialsolutions implies the existence of nontrivial solutions. As detailed in [6, 13, 36], the uniform stability condition breaks down in some cases and Majda’s nonlinear existence result can not be applied anymore. Our purpose is therefore to derive a linear stability result under a weaker condition than Majda’s one.
2
The constant coecien ts analysis
We rstexaminthelinearstabilityofaplanarshockinordertoformulateourweakstabilityassumptions. A planar shock is a solution of (1) that takes the form ud t> +y u=(ulrififxxd<  t+y,(,)6
4
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents