ENS BCPST Cursus et débouchés

icon

4

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

4

pages

icon

Français

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

ENS BCPST Cursus et débouchés
Voir icon arrow

Publié par

Langue

Français

HEC 2000. MATHEMATIQUES I, option scientifique.
p Ceproble`meapourobjetl´etudedespointsenlesquelsuneapplicationline´airedeRdansR atteintsonmaximumsurlensembledessolutionsdunsyste`medin´equationslin´eaires. p Pour tout entierpstrictement positif, on identifieraRetMp,1(R).
PartieI:Pre´liminaires On dit qu’une partieKnon vide deRlee´rniqursloeustxileetsamoj´reeMtel que
xK, xM Unr´eelMdejomantraleppnuele´tiasstneciragelais´nv´eK; on dit aussi queMmajoreK. Dans ce qui suit on suppose queKeeidnvnoiertpaneutsedeeroe´mtjaR. SoitMun majorant deKeta´el´untdeemenKs(tee´nO.dnssiutielun)nNet (vn)nNpar   un+vnun+vn n, vnmajore passi neK u0=a 2 2 etnN,(un+1, vn+1) =   un+vn v0=Mun,sinon 2 1)On suppose, dans cette question seulement, queK= [0,1[[3,4[, a= 0 et queM= 10. De´terminer(un, vn) pour tout entiernpatrapanenat`{1,2,3,4}. 2).eraluasiamro´ne´gsacevnrOesd´ntie a)Montrer que :nN, unvn. b)Montrer que les deux suites (un)nNet (vn)nNtnseteocvnreegtnsontadjacelee´rnusrevb. c)Montrer que pour tout entier positifn,vnest un majorant deK, puis quebmajoreK. d)ntsde´el´emeenustideelixtsueertriquonMKqui converge versb. 0 e)On suppose quebest un majorant deK. 0 Montrer quebb. ueireq´eduEndbenxdautinixioisehcapdsepdndee´aetMpourvu queairtanpepeana` Ket queMmajoreK. D´esormais,onnoteraαKle majorantbdeKainsi obtenu.
´ Partie II : Etude d’un exemple p 2 22 On munitRienrparonasedidcleume´eednnie||(x, y)||=x+ypour tout (x, y) appartenant 2 `aR. 1)sleer´esbromsnoitrreocsndie`nOa, b, c, tels que (a, b)6= (0,sioreltsolsrinat´de).On0 ensembles :   2 D= (x, y)R;ax+by+c= 0   2 2 R+= (x, y)R;ax+by+c >0 etR= (x, y)R;ax+by+c <0 2 a)Montrer queR+est une partie ouverte deR.
Voir icon more
Alternate Text