A best-possible double inequality between Seiffert and harmonic means
7 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

A best-possible double inequality between Seiffert and harmonic means

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
7 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

In this paper, we establish a new double inequality between the Seiffert and harmonic means. The achieved results is inspired by the papers of Sándor (Arch. Math., 76, 34-40, 2001) and Hästö (Math. Inequal. Appl., 7, 47-53, 2004), and the methods from Wang et al. (J. Math. Inequal., 4, 581-586, 2010). The inequalities we obtained improve the existing corresponding results and, in some sense, are optimal. 2010 Mathematics Subject Classification: 26E60.

Sujets

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 6
Langue English

Extrait

Chuet al.Journal of Inequalities and Applications2011,2011:94 http://www.journalofinequalitiesandapplications.com/content/2011/1/94
R E S E A R C HOpen Access A bestpossible double inequality between Seiffert and harmonic means 1* 12 YuMing Chu, MiaoKun Wangand ZiKui Wang
* Correspondence: chuyuming2005@yahoo.com.cn 1 Department of Mathematics, Huzhou Teachers College, Huzhou, 313000, China Full list of author information is available at the end of the article
Abstract In this paper, we establish a new double inequality between the Seiffert and harmonic means. The achieved results is inspired by the papers of Sándor (Arch. Math., 76, 3440, 2001) and Hästö (Math. Inequal. Appl., 7, 4753, 2004), and the methods from Wang et al. (J. Math. Inequal., 4, 581586, 2010). The inequalities we obtained improve the existing corresponding results and, in some sense, are optimal. 2010 Mathematics Subject Classification:26E60. Keywords:harmonic mean, Seiffert mean, inequality
1 Introduction Fora,b >0 withab, the Seiffert meanP(a,b) was introduced by Seiffert [1] as fol lows: ab P(a,b) =(1:1) 4 arctana/bπ Recently, the bivariate mean values have been the subject of intensive research. In particular, many remarkable inequalities for the Seiffert mean can be found in the lit erature [19]. LetH(a,b) = 2ab/(a+b),G a,b=ab,L(a,b) = (ab)/(loga logb),I(a,b) = 1/e b a1/(ba2) 2p p1/p (b/a) ,A(a,b) = (a+b)/2,C(a,b) = (a+b)/(a+b), andMp(a,b) = ((a+b)/2) (p0) andbe the harmonic, geometric, logarithmic, identric, arith M0a,b=ab metic, contraharmonic, andpth power means of two different positive numbersaand b, respectively. Then, it is well known that min{a,b}<H(a,b) =M1(a,b)<G(a,b) =M0(a,b)<L(a,b) <I a,b<A a,b=M1a,b<C a,b<max{a,b} For alla,b >0 withab, Seiffert [1] established thatL(a,b)< P(a,b)< I(a,b); Jagers [4] proved thatM1/2(a,b)< P(a,b)< M2/3(a,b) andM2/3(a,b) is the best possible upper power mean bound for the Seiffert meanP(a,b); Seiffert [7] estab lished thatP(a,b)> A(a,b)G(a,b)/L(a,b) andP(a,b)>2A(a,b)/π; Sándor [6] pre sented that(A(a,b) +G(a,b))/2<P(a,b)<A(a,b)(A(a,b) +G(a,b))/2and 3 2 A(a,b)G(a,b)<P(a,b)<(G(a,b) + 2A(a,b))/; Hästö [3] proved thatP(a,b)>
© 2011 Chu et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents