Ab initio all electron full potential linearized augmented plane wave method for one-dimensional systems [Elektronische Ressource] / vorgelegt von Yuriy Mokrousov
147 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Ab initio all electron full potential linearized augmented plane wave method for one-dimensional systems [Elektronische Ressource] / vorgelegt von Yuriy Mokrousov

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
147 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Ab initio All-electron Full-potential LinearizedAugmentedPlane-wave Method for One-dimensional SystemsVon der Fakult at fur Mathematik, Informatik und Naturwissenschaften derRheinisch-Westf alischen Technischen Hochschule Aachenzur Erlangung des akademischen Grades eines Doktors der Naturwissenschaftengenehmigte Dissertationvorgelegt vonMaster of ScienceYuriy Mokrousovaus Kiev (Ukraine)Berichter: Universit atsprofessor Dr. Stefan BlugelUniversit Dr. Peter Heinz DederichsTag der mundlic hen Prufung: 24.05.2005Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbarAbstractIn recent years we witnessed an enormous progress in the chemical synthesis, growth andthe development of technology allowing the fabrication of a rich variety of one-dimensional(1D) structures. They include single walled (SWNT) and multi-walled (MWNT) one-dimensional tubular structures, made of carbon, GaN, BN, TiO, VO and other com-pounds, thin metallic quantum wires, quasi-1D molecular magnets etc. They involveelements from the entire periodic table and show new physical phenomena such as quan-tized conductance, charge and spin separation, intriguing structural and magnetic prop-erties such as high spin-polarization and large spin-scattering lengths. In many cases thetransport properties of these systems can be easily tuned by choosing suitable structuralparameters such as the diameter or chirality.

Sujets

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 15
Langue English
Poids de l'ouvrage 4 Mo

Extrait

AbinitioAll-electronFull-potentialLinearized
tedAugmenPlane-waveMethodforOne-dimensionalSystems

VonderFakult¨Rheiniscatf¨urh-Westf¨aliscMathematik,henTechniscInformatikhenHoundchschuleNaturwissenscAachenhaftender
zurErlangungdesakademischenGradeseinesDoktorsderNaturwissenschaften
Dissertationgenehmigte

onvorgelegtv

ScienceofMaster

vMokrousouriyY

(Ukraine)Kievaus

Berichter:Universit¨atsprofessorDr.StefanBl¨ugel
Universit¨atsprofessorDr.PeterHeinzDederichs

Tagderm¨undlichenPr¨ufung:24.05.2005

DieseDissertationistaufdenInternetseitenderHochschulbibliothekonlineverf¨ugbar

Abstract

Inrecentyearswewitnessedanenormousprogressinthechemicalsynthesis,growthand
thedevelopmentoftechnologyallowingthefabricationofarichvarietyofone-dimensional
(1D)structures.Theyincludesinglewalled(SWNT)andmulti-walled(MWNT)one-
dimensionaltubularstructures,madeofcarbon,GaN,BN,TiO,VOandothercom-
pounds,thinmetallicquantumwires,quasi-1Dmolecularmagnetsetc.Theyinvolve
elementsfromtheentireperiodictableandshownewphysicalphenomenasuchasquan-
tizedconductance,chargeandspinseparation,intriguingstructuralandmagneticprop-
ertiessuchashighspin-polarizationandlargespin-scatteringlengths.Inmanycasesthe
transportpropertiesofthesesystemscanbeeasilytunedbychoosingsuitablestructural
parameterssuchasthediameterorchirality.Moreover,thediametersofmanyexperimen-
tallyobserved1Dstructuresaremuchsmallerthanmostsemiconductordevicesobtained
sofar,andthusonecanimaginethatthesmallestpossibletransistorsarelikelytobe
basedonthem.Inordertounderstandthestructure-propertyrelationinthesenewma-
terialsonthebasisoftheelectronicstructure,abinitiocalculationsbasedonthedensity
functionaltheoryplayanimportantrole.
Inthisworkwehavepresentedanextensionofthefull-potentiallinearizedaugmented
plane-wave(FLAPW)methodtotrulyone-dimensionalsystems.Thespaceispartitioned
intothreeregions,themuffin-tinspherearoundtheatom,avacuumregionsurrounding
acylinderandtheinterstitialregionbetweentheatomsandthevacuumregion.Ineach
regionoptimalbasisfunctionsforthewavefunctions,chargedensityandpotentialareused.
Thespin-orbitinteractionisincludedtoinvestigatetheorbitalmomentsandthemagnetic
anisotropy.Despitetheplane-waverepresentationintheinterstitialregionwewereable
toincludeawideclassofchiralsymmetries,characteristicforone-dimensionalsystems.
Theone-dimensionalFLAPWmethodwasimplementedasextensionoftheFLAPWcode
FLEURandparallelizedforsupercomputingapplications.Duetotheefficientlyadjusted
basisfunctionsandpartitioningofspace,1Dcodeallowstoachieveasignificantspeed-
up,forinstance,approximatelybyafactorof150formonowires,ascomparedtothe
super-cellapproachinthebulkcode.
Theaccuracy,precisionandcorrectnessofthecodewasvalidatedonasetof1Dstruc-
tures,alreadycalculatedpreviouslywithothermethods.Wefocusedonthesystemsof
alargecurrentinterestinthefieldofnanophysics.Wereportedonthecalculationsof
3d-and4d-monowires(Ti;Y,Zr,Nb,Mo,Tc,Ru,RhandPd).Forthesemonowires
weinvestigatedtheferro-andantiferromagneticinstability,calculatedequilibriuminter-
atomicdistances,magneticandorbitalmoments,magnetocrystallineanisotropyenergies.
Wefoundthatacrossthe4d-transition-metalseries,YandNbexhibitanonmagnetic
ground-state,MoandTcareantiferromagneticandZr,Ru,RhandPdareferromagnetic
atequilibriumlatticeconstants.FortheRu,RhandPdsystemiswasfoundthatthe
easyaxisisperpendiculartothewireforRuandPdandalong-the-wireforRh.
Furtherweconsidereda(6,0)nanowireofgoldatoms,andahybridstructureofaniron
monowireinsideagold(6,0)tube,showingthattheFemonowireispronetothePeierls
dimerization.ForthehybridsystemFe@Au(6,0)wefoundahighspin-polarizationatthe

Fermilevel,proposing,therefore,thissystemasapossiblecandidateforspin-dependent
applications.orttranspUsingasuper-cellapproachwithintheone-dimensionalFLAPWmethodweinves-
tigatedasetofone-dimensionalmultiple-deckersandwichesofbenzeneandvanadium,
whichareforthepast20yearsofgreatinterestinthefieldoforganometallics.Thecalcu-
latedstructuralresultsobtainedareingoodagreementwithexperimentalandtheoretical
results.Afterthecalculationoftotalenergies,magneticmoments,orbitalinteraction
schemes,onecanfinallyconclude,thatwiththeincreasingnumberofthevanadiumatoms
inthemolecule,themagneticmomentsofvanadiiprefertoorderferromagnetically,which
wasrecentlyobservedexperimentally.

”UsinganequalityduetoBogolyubov,MerminandWagner

haveprovedrigorouslytheabsenceofbothferromagnetism

andantiferromagnetisminone-dimensionalspinsystems.”

M.B.WalkerandT.W.Ruijgrak,PhysicalReview,171,513

still...still...”still...

MilesDavistohismusiciansin

GingerbreadBoy,album”MilesSmiles”,Columbia

still...”

CL

2601

(1968)

(1966)

4

tstenCon

ductiontroIn1

2DensityFunctionalTheory
2.1DensityFunctionalTheory...........................
2.2SpinDensityFunctionalTheory........................
2.3TheLocalSpinDensityApproximation....................
2.4TheGeneralizedGradientApproximation(GGA)..............

3FLAPWApproachtoOne–DimensionalSystems
3.1FLAPWMethod................................
3.1.1TheAPWMethod...........................
3.1.2TheConceptofLAPW........................
3.1.3TheConceptofFLAPW........................
3.2ChiralSymmetries...............................
3.2.1HexagonalIn-PlaneLattice......................
3.2.2TriangularIn-PlaneLattice......................
3.3Implementation.................................
3.3.1Geometry................................
3.3.2Symmetries...............................
3.3.3ChargeDensityandPotential.....................
3.3.4CoulombPotential...........................
3.3.5BasisFunctions.............................
3.3.6EigenvalueProblem..........................
3.3.7Timing..................................

ProblemaluevEigen44.1RelativityinValenceElectronCalculations..................
4.1.1TheKohn-Sham-DiracEquation....................
4.1.2TheScalarRelativisticApproximation................
4.2ConstructionoftheHamiltonianMatrix...................
4.2.1HamiltonianandOverlapMatricesintheSpheres..........
4.2.2InversionSymmetry..........................
4.2.3HamiltonianandOverlapMatricesintheInterstitial........

5

9

1313161718

21212223252627293031323435373838

4142434446475052

CONTENTS64.2.4HamiltonianandOverlapMatricesintheVacuum.........54
4.3FermiEnergyandBrillouinZoneIntegration.................58
61yDensitCharge55.1GenerationoftheStartingDensity......................61
5.2GenerationoftheChargeDensity......................63
5.2.1“l-like”Charge.............................64
5.2.2DeterminationoftheOptimalEnergyParameters..........65
5.2.3GenerationoftheChargeDensityintheSpheres...........65
5.2.4GenerationoftheChargeDensityintheInterstitial........66
5.2.5GenerationoftheChargeDensityintheVacuum..........67
69tialotenP66.1CoulombPotential...............................69
6.1.1ThePseudo-ChargeScheme......................69
6.1.2SolutionofthePoissonEquationintheVacuumandInterstitial..71
6.2Exchange–CorrelationPotential........................79
σσ6.2.1CalculationofandVintheInterstitial.............79
xcxcσσ6.2.2CalculationofandVintheSpheres...............80
xcxcσσ6.2.3CalculationofandVintheVacuum...............80
xcxc83Results77.1MonowiresofTiand4dtransitionelements.................83
7.1.1TiMonowire..............................85
7.1.2Monowiresof4dtransitionelements.................88
7.2Gold(6,0)Nanowire..............................99
7.2.1ComputationalDetails.........................99
7.2.2GeometricalStructure.........................101
7.2.3ElectronicStructure..........................101
7.2.4ChargeDensity.............................102
7.3HybridStructureFe@Au(6,0).........................103
7.3.1GeometricalStructure.........................104
7.3.2MagneticProperties..........................105
7.3.3ElectronicStructure..........................106
7.3.4ChargeDensity.............................108
7.4One-DimensionalMultipleBenzene-VanadiumSandwiches.........108
7.4.1ComputationalDetails.........................112
7.4.2V(Bz)Complex.............................113
7.4.3V(Bz)Complex............................118
217.4.4V(Bz)Complex............................122
327.4.5V(Bz)Complex............................126
437.4.6Conclusions...............................129

CONTENTS

8

Conclusions

7

131

8

CONTENTS

Chapter1

ductiontroIn

tiveDuringandthefastestlastgrodecadewingfieldsresearchofonmothedernphnanoscaleysics.devOneelopreasonedtoisonecertainlyofthethemostinnoenormousva-
alloprogresswingthewitnessedfabricationintheofcarichemicalhvarietsynythesis,ofgronanomaterialswthandthewithdevunprecedenelopmentoftedtecnewhnologyprop-
erties.Asthescaleofnanomaterialscontinuetodecreasefromthemesoscopicregime
totheatomicscale,one-dimensional(1D)nanometerscalesystemssuchascarbonnan-
licotubquanes[38],tumwiresradially[49,and29,113axially]momovedindulatedtothefocussemiconductorofattennanotion.wiresThe[71],excitemenandthintinmetal-these
quantizedone-dimensionalconductance,structureschargeisfueledandbspinytheirwseparation,ealthofinnewtriguingphysicalstructuralphenomenaandsucmagnetichas
propthereisertiesasucgeneralhashighconsensusspin-pontheolarizationexpectationandlargethatthespin-scatteringquantumnaturelengthsin[115].materialsTodayis,

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents