Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice
10 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Carbon-nanoparticle-triggered acute lung inflammation and its resolution are not altered in PPARγ-defective (P465L) mice

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
10 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

The alveolar macrophage (AM) - first line of innate immune defence against pathogens and environmental irritants - constitutively expresses peroxisome-proliferator activated receptor γ (PPARγ). PPARγ ligand-induced activation keeps the AM quiescent, and thereby contributes to combat invaders and resolve inflammation by augmenting the phagocytosis of apoptotic neutrophils and inhibiting an excessive expression of inflammatory genes. Because of these presumed anti-inflammatory functions of PPARγ we tested the hypothesis, whether reduced functional receptor availability in mutant mice resulted in increased cellular and molecular inflammatory response during acute inflammation and/or in an impairment of its resolution. Methods To address this hypothesis we examined the effects of a carbon-nanoparticle (CNP) lung challenge, as surrogate for non-infectious environmental irritants, in a murine model carrying a dominant-negative point mutation in the ligand-binding domain of PPARγ (P465L/wt). Animals were instilled intratracheally with Printex 90 CNPs and bronchoalveolar lavage (BAL) was gained 24 h or 72 h after instillation to investigate its cellular and protein composition. Results Higher BAL cell numbers - due to higher macrophage counts - were found in mutants irrespective of treatment. Neutrophil numbers in contrast were slightly lower in mutants. Intratracheal CNP instillation resulted in a profound recruitment of inflammatory neutrophils into the alveolus, but genotype related differences at acute inflammation (24 h) and resolution (72 h) were not observed. There were no signs for increased alveolar-capillary membrane damage or necrotic cell death in mutants as determined by BAL protein and lactate-dehydrogenase content. Pro-inflammatory macrophage-derived cytokine osteopontin was higher, but galectin-3 lower in female mutants. CXCL5 and lipocalin-2 markers, attributed to epithelial cell stimulation did not differ. Conclusions Despite general genotype-related differences, we had to reject our hypothesis of an increased CNP induced lung inflammation and an impairment of its resolution in PPARγ defective mice. Although earlier studies showed ligand-induced activation of nuclear receptor PPARγ to promote resolution of lung inflammation, its reduced activity did not provide signs of resolution impairment in the settings investigated here.

Sujets

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 12
Langue English

Extrait

Götzet al.Particle and Fibre Toxicology2011,8:28 http://www.particleandfibretoxicology.com/content/8/1/28
R E S E A R C HOpen Access Carbonnanoparticletriggered acute lung inflammation and its resolution are not altered in PPARgdefective (P465L) mice 1* 23 41* Alexander A Götz, Antonio VidalPuig , Heiko G Rödel , Martin Hrabé de Angelisand Tobias Stoeger
Abstract Background:The alveolar macrophage (AM)  first line of innate immune defence against pathogens and environmental irritants  constitutively expresses peroxisomeproliferator activated receptorg(PPARg). PPARgligand induced activation keeps the AM quiescent, and thereby contributes to combat invaders and resolve inflammation by augmenting the phagocytosis of apoptotic neutrophils and inhibiting an excessive expression of inflammatory genes. Because of these presumed antiinflammatory functions of PPARgwe tested the hypothesis, whether reduced functional receptor availability in mutant mice resulted in increased cellular and molecular inflammatory response during acute inflammation and/or in an impairment of its resolution. Methods:To address this hypothesis we examined the effects of a carbonnanoparticle (CNP) lung challenge, as surrogate for noninfectious environmental irritants, in a murine model carrying a dominantnegative point mutation in the ligandbinding domain of PPARg(P465L/wt). Animals were instilled intratracheally with Printex 90 CNPs and bronchoalveolar lavage (BAL) was gained 24 h or 72 h after instillation to investigate its cellular and protein composition. Results:Higher BAL cell numbers  due to higher macrophage counts  were found in mutants irrespective of treatment. Neutrophil numbers in contrast were slightly lower in mutants. Intratracheal CNP instillation resulted in a profound recruitment of inflammatory neutrophils into the alveolus, but genotype related differences at acute inflammation (24 h) and resolution (72 h) were not observed. There were no signs for increased alveolarcapillary membrane damage or necrotic cell death in mutants as determined by BAL protein and lactatedehydrogenase content. Proinflammatory macrophagederived cytokine osteopontin was higher, but galectin3 lower in female mutants. CXCL5 and lipocalin2 markers, attributed to epithelial cell stimulation did not differ. Conclusions:Despite general genotyperelated differences, we had to reject our hypothesis of an increased CNP induced lung inflammation and an impairment of its resolution in PPARgdefective mice. Although earlier studies showed ligandinduced activation of nuclear receptor PPARgto promote resolution of lung inflammation, its reduced activity did not provide signs of resolution impairment in the settings investigated here. Keywords:peroxisomeproliverator activated receptorγ, carbonnano particle, pulmonary inflammation, chronic lung disease, challenge, immune cell, bronchoalveolar lavage (BAL), inflammatory marker
* Correspondence: alexander.a.goetz@web.de; tobias.stoeger@helmholtz muenchen.de 1 Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg/Munich, D85764, Germany Full list of author information is available at the end of the article
© 2011 Götz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents