Characterization of Cr_1tn2O_1tn3 catalysts for Cl/F exchange reactions [Elektronische Ressource] / von Ercan Ünveren
134 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Characterization of Cr_1tn2O_1tn3 catalysts for Cl/F exchange reactions [Elektronische Ressource] / von Ercan Ünveren

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
134 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Characterization of Cr O catalysts2 3for Cl/F exchange reactionsDissertationzur Erlangung des akademischen Gradesdoctor rerum naturalium(Dr. rer. nat.)im Fach Chemieeingereicht an derMathematisch-Naturwissenschaftlichen Fakult¨at Ider Humboldt-Universit¨at zu Berlinvon¨MSc Chemical Engineer Ercan Unverengeboren am 24. Oktober 1973 in Saarbruc¨ kenPras¨ ident der Humboldt-Universit¨at zu BerlinProf. Dr. Ju¨rgen MlynekDekan der Mathematisch-Naturwissenschaftlichen Fakult¨at IProf. Dr. Michael W. LinscheidGutachter:1. Prof. Dr. Erhard Kemnitz2. Dr. Wolfgang E. S. Unger3. Prof. Dr. Klaus RademannTag der mundlic¨ hen Prufung:¨ 23. April 2004AbstractThe Cr O is one of the most important catalysts in the chlorine/fluorine (Cl/F)2 3exchange reactions for the production of chlorofluorocarbon (CFC) alternatives. Itis established as an excellent heterogeneous catalyst for fluorination reactions.The dismutation of CCl F was used to probe the effect of halogenation of chromia2 2on Cl/F exchange reactions in order to find out the difference between the inactiveand active catalysts. The heterogeneous reactions were performed in a continuousflow Ni reactor and also under simulated reaction conditions in a reactor where af-ter the reaction the X-ray photoelectron spectroscopy (XPS) and the X-ray excitedAuger electron spectroscopy (XAES) analyses could be followed directly without aircontact, under so called “in-situ” conditions.

Informations

Publié par
Publié le 01 janvier 2004
Nombre de lectures 6
Langue English
Poids de l'ouvrage 13 Mo

Extrait

Characterization of Cr O catalysts2 3
for Cl/F exchange reactions
Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium
(Dr. rer. nat.)
im Fach Chemie
eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakult¨at I
der Humboldt-Universit¨at zu Berlin
von
¨MSc Chemical Engineer Ercan Unveren
geboren am 24. Oktober 1973 in Saarbruc¨ ken
Pras¨ ident der Humboldt-Universit¨at zu Berlin
Prof. Dr. Ju¨rgen Mlynek
Dekan der Mathematisch-Naturwissenschaftlichen Fakult¨at I
Prof. Dr. Michael W. Linscheid
Gutachter:
1. Prof. Dr. Erhard Kemnitz
2. Dr. Wolfgang E. S. Unger
3. Prof. Dr. Klaus Rademann
Tag der mundlic¨ hen Prufung:¨ 23. April 2004Abstract
The Cr O is one of the most important catalysts in the chlorine/fluorine (Cl/F)2 3
exchange reactions for the production of chlorofluorocarbon (CFC) alternatives. It
is established as an excellent heterogeneous catalyst for fluorination reactions.
The dismutation of CCl F was used to probe the effect of halogenation of chromia2 2
on Cl/F exchange reactions in order to find out the difference between the inactive
and active catalysts. The heterogeneous reactions were performed in a continuous
flow Ni reactor and also under simulated reaction conditions in a reactor where af-
ter the reaction the X-ray photoelectron spectroscopy (XPS) and the X-ray excited
Auger electron spectroscopy (XAES) analyses could be followed directly without air
contact, under so called “in-situ” conditions.
In order to be able to apply the Cr(III) 2p XPS analysis in the proper manner
the spectroscopic features of the chromium(III) compounds of O, F and Cl were
re-investigated. Latest generation of XPS spectrometers, which are able to ana-
lyze non-conductive powders with ultimate energy resolution, were used to reveal
multiplet splitting features and satellite emission in the Cr 2p spectra. The energy
positions of the multiplets were determined by total electron yield (TEY)- X-ray
absorption near edge structure (XANES) spectroscopy. Using both high resolution
XPS and XANES spectra a peak-fit analysis, which is also applicable for normally
resolved Cr 2p XPS spectrum, was proposed. In order to overcome the known back-
ground problem by drawing the background in the broad Cr 2p window including
the high binding energy satellite, a modified Shirley background, which is a com-
bination of a linear and Shirley function, was used. Moreover, the spectroscopic
features of the Cr(III) 3s XPS spectrum, which is relatively simpler than the Cr 2p
one, were also surveyed. An alternative chemical analysis was proposed by using
chemical state plots for Cr 3s.
Both ex- and in-situ ESCA show that as soon as Cr O is conducted to CCl F at2 3 2 2
◦390 C fluorination as well as chlorination takes place at the catalyst surface. When
the XPS surface composition reaches approximately 4 atom% fluorination and 6
atom% chlorination, maximum catalytic activity is obtained. Applying longer re-
action times do not change significantly the obtained surface composition of the
activated chromia. The fluorination and chlorination of chromia was further inves-
tigated by various HF and HCl treatments as well.
The activated chromia samples and reference samples with well known chemical
structure were also characterized by XANES, time of flight - static secondary ion
massspectroscopy(ToF-SSIMS),scanningelectronmicroscopy(SEM),fluorinesolid
state NMR, pyridine-FTIR, wet chemical (F and Cl) analysis, X-ray powder diffrac-
tion (XRD) and surface area (BET) analysis.The results for the references Cr O , Cr(OH) , CrF OH, CrF .H O, α−CrF ,2 3 3 2 3 2 3
β−CrF and CrCl and activated Cr O samples were compared. The applied3 3 2 3
characterization methods suggest that the formation of chromium oxide chloride
fluoride species, e.g. chromium oxide halides, at the surface is sufficient to provide
catalytic activity. The presence of any CrF and/or CrCl phases on the activated3 3
chromia samples were not detected.CONTENTS iii
Contents
Abstract i
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Catalytic Synthesis of CFC Alternatives . . . . . . . . . . . . . . . . 3
1.2.1 HFC-134a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 HCFC-123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 HCFC-124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 HCFC-125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.5 HFC-152a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.6 HCFC-141b . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.7 HFC-32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Fundamentals of heterogeneous fluorination catalysts . . . . . . . . . 8
1.3.1 Chromium and aluminium oxides . . . . . . . . . . . . . . . . 8
1.3.2 Ch and fluorides . . . . . . . . . . . . . . . 10
1.3.3 Structuraldifferencesbetweenα−MF andβ−MF related3 3
phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Basics of the Methods 16
2.1 X-ray Photoelectron Spectroscopy (XPS) . . . . . . . . . . . . . . . . 16
2.1.1 Principle of Technique . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Chemical Shift . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.3 Intra and Extra Atomic Relaxations . . . . . . . . . . . . . . 20
2.1.4 Auger Parameter . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.5 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.6 Quantitative Analysis. . . . . . . . . . . . . . . . . . . . . . . 23
2.2 X-ray Absorption Spectroscopy (XAS) . . . . . . . . . . . . . . . . . 27
2.3 The relationship between XPS and XAS . . . . . . . . . . . . . . . . 29
3 Results and Discussion 31
3.1 Complexity of Cr 2p X-ray Photoelectron Spectrum . . . . . . . . . . 31
3.2 Cr 2p X-ray Photoelectron Spectra for Cr(III) compounds of O, F
and Cl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Activation Studies and ESCA . . . . . . . . . . . . . . . . . . . . . . 39
◦3.3.1 Dismutation of CCl F at 390 C in a tubular flow reactor . . 392 2
◦3.3.2 Dismutation of CCl F at 390 C “in-situ” conditions . . . . . 522 2
◦3.3.3 Dismutation of CCl F at 300 C in a tubular flow reactor . . 562 2
◦3.3.4 HF treatment at 390 C in a tubular flow reactor . . . . . . . 61CONTENTS iv
◦3.3.5 HCl treatment at 390 C in a tubular flow reactor . . . . . . . 64
3.3.6 Pre-halogenation before halogen treatment or dismutation of
◦CCl F at 390 C in a tubular flow reactor . . . . . . . . . . . 672 2
3.4 XANES Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.1 Cr K-edge XANES . . . . . . . . . . . . . . . . . . . . . . . . 69
3.4.2 Cr L -edge . . . . . . . . . . . . . . . . . . . . . . . 712,3
3.4.3 F K-edge XANES . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.5 ToF-SIMS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.6 SEM Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.7 Fluorine Solid State NMR Analysis . . . . . . . . . . . . . . . . . . . 81
3.8 FTIR-Photoacoustic Analysis . . . . . . . . . . . . . . . . . . . . . . 84
3.9 Wet Chemical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.10 Powder XRD Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.11 Surface Area Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4 Conclusion 89
5 Zusammenfassung 92
6 Outlook 96
7 Experimental 97
7.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.2.1 Dismutation of CCl F in real reaction conditions . . . . . . . 972 2
7.2.2 Dismutation of CCl F in simulated reaction conditions. . . . 982 2
7.3 Analytical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.1 X-ray Photoelectron Spectroscopy (XPS) . . . . . . . . . . . . 99
7.3.2 X-ray Absorption Near Edge Structure (XANES) . . . . . . . 100
7.3.3 Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) 102
7.3.4 Scanning Electron Microscopy (SEM) . . . . . . . . . . . . . . 102
7.3.5 Fluorine Solid State NMR Analysis . . . . . . . . . . . . . . . 102
7.3.6 FTIR-Photoacoustic Analysis . . . . . . . . . . . . . . . . . . 103
7.3.7 Wet Chemical Analysis . . . . . . . . . . . . . . . . . . . . . . 103
7.3.8 Powder X-ray Diffraction (XRD) . . . . . . . . . . . . . . . . 103
7.3.9 Surface Area Analysis (BET) . . . . . . . . . . . . . . . . . . 103
7.3.10 Gas Chromatography (GC) . . . . . . . . . . . . . . . . . . . 104
8 Nomenclature 105
References 108CONTENTS v
A Appendix 114
B Appendix 119
Acknowledgments 122
Curriculum Vitae 123LIST OF FIGURES vi
List of Figures
1 Structure of Cr O , corundum . . . . . . . . . . . . . . . . . . . . . . . 132 3
2 Structure of (a) α−CrF , (b) β−CrF , (c) CrF OH (pyrochlore) and3 3 2
(d) CrCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3 The dependence of inelastic mean free path on electron energy [1] . . . . . 18
4 Illustration of how to create a chemical state (Wagner) plot. Wide scan of
halogenated chromia (top), chemical state plot for Cl (center), Cl LMM

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents