Climate Policy under Uncertainty [Elektronische Ressource] / Matthias Georg Werner Schmidt. Betreuer: Ottmar Edenhofer
99 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Climate Policy under Uncertainty [Elektronische Ressource] / Matthias Georg Werner Schmidt. Betreuer: Ottmar Edenhofer

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
99 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

ClimatePolicyunderUncertaintyvorgelegtvonDiplomPhysikerMatthiasG.W.SchmidtausHeidelbergTechnischeUniversitätBerlinFakultätVI-PlanenBauenUmweltvorgelegtzurErlangungdesakademischenGradesDoktorderWirtschaftswissenschaften-Dr. rer. oec.genehmigteDissertationPromotionsausschuss:Vorsitzende: Prof. Dr. CordulaLoidl-ReischBerichter: Prof. Dr. OttmarEdenhoferBerichter: Prof. Dr. HermannHeldTagderwissenschaftlichenAussprache: 31.08.2011Berlin2011D831ContentsAbstract 3Acknowledgements 51 Introduction 71.1 The Science of Climate Change . . . . . . . . . . . . . . . . . . . . . . . . 71.2 The Economics of Climate Change . . . . . . . . . . . . . . . . . . . . . . 81.3 Uncertainty and Climate Policy . . . . . . . . . . . . . . . . . . . . . . . . 111.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 UncertainandHeterogeneousClimateDamages 192.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.2.1 No Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.2.2 Perfect Insurance Market . . . . . . . . . . . . . . . . . . . . . . . 252.2.3 Self-Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.3 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.3.

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 38
Langue Deutsch
Poids de l'ouvrage 1 Mo

Extrait

ClimatePolicy
underUncertainty
vorgelegtvonDiplomPhysiker
MatthiasG.W.Schmidt
ausHeidelberg
TechnischeUniversitätBerlin
FakultätVI-PlanenBauenUmwelt
vorgelegtzurErlangungdesakademischenGrades
DoktorderWirtschaftswissenschaften-Dr. rer. oec.
genehmigteDissertation
Promotionsausschuss:
Vorsitzende: Prof. Dr. CordulaLoidl-Reisch
Berichter: Prof. Dr. OttmarEdenhofer
Berichter: Prof. Dr. HermannHeld
TagderwissenschaftlichenAussprache: 31.08.2011
Berlin2011
D831
Contents
Abstract 3
Acknowledgements 5
1 Introduction 7
1.1 The Science of Climate Change . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The Economics of Climate Change . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Uncertainty and Climate Policy . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 UncertainandHeterogeneousClimateDamages 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 No Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Perfect Insurance Market . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Self-Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 No Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Perfect Insurance Market . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Self-Insurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3 ClimateTargetsunderUncertainty 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Fixed Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3 Adjusting Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.1 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492 Contents
3.6.2 Violation of Independence Axiom . . . . . . . . . . . . . . . . . . 49
3.6.3 Partial Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 AnticipatingClimateThresholds 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Model and Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.3 The Integrated Assessment Model MIND . . . . . . . . . . . . . . 59
4.2.4 Learning about Climate Sensitivity and Damages . . . . . . . . . . 60
4.2.5 about Threshold Damages . . . . . . . . . . . . . . . . . 61
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Learning about Climate Sensitivity and Damages . . . . . . . . . . 62
4.3.2 about Threshold Damages . . . . . . . . . . . . . . . . . 63
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5 UncertaintyinIntegratedAssessmentModels 73
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Implications of Parameter Uncertainty . . . . . . . . . . . . . . . . . . . . 77
5.2.1 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 The Value of Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Implications of Stochasticity . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.1 Discrete Time Modeling . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.2 Continuous Time Modeling . . . . . . . . . . . . . . . . . . . . . 85
5.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6 Conclusions 91
6.1 Uncertainty and Climate Policy . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Learning and Climate Policy . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 A Decision Criterion for Climate Policy . . . . . . . . . . . . . . . . . . . 95
6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 973
Abstract
The challenges posed by climate change are unprecedented in scale and scope. Climate
change is global in its origins and impacts. It involves time horizons of hundreds of years
and many generations. And, last but not least, it is surrounded by great uncertainty, which is
the focus of this thesis. More specifically, this thesis intends to contribute to the identifica-
tion of climate policies that do justice to the pervasiveness of uncertainty in climate change.
In its core it contains four research articles.
The first article shows that the combination of uncertainty about climate damages with
the fact that climate damages will be distributed heterogeneously across the population can
be an argument for substantially stricter climate policy, i.e. stronger emissions reductions.
The article also discusses how insurance and self-insurance can, at least theoretically, miti-
gate this result and thus permit weaker climate policy.
The second article highlights some major conceptual problems of cost-effectiveness
analysis of climate policies for given climate targets. The occur once it is taken
into account that uncertainty will be reduced in the future, which is an important aspect of
climate change. In consequence, we propose an alternative decision criterion that avoids
the problems by including a trade-off between the probability of violating the target and
aggregate mitigation costs.
The third article investigates the circumstances under which learning about tipping ele-
ments in the climate system is an argument for stricter or weaker climate policy. It shows
that learning is an argument for stricter policy if it is expected to happen in a narrow “antic-
ipation window” in time, and that it can be neglected otherwise.
The fourth article reviews approaches to uncertainty in integrated assessment models
of climate change with corresponding results. The complexity of the matter demands a
variety of complementary approaches and a later synthesis of results. This article intends to
summarize and structure this process and the respective literature.
The research articles are framed by an introduction to the field and general conclusions.4 Abstract5
Acknowledgements
I would like to thank my family and friends as well as my colleagues at the Potsdam Institute
for their support. In particular, I want to thank Hermann Held and Elmar Kriegler for
creating and leading a wonderful collaboration in the Risk Group. Thanks to Alexander
Lorenz for valuable discussions, and thank you to Ottmar Edenhofer and Hermann Held for
supervising this thesis.67
Chapter1
Introduction
This chapter lays out the context of the thesis and specifies its objectives. Sections 1.1
and 1.2 give brief overviews of the science and economics of climate change, respectively.
Section 1.3 introduces the main questions raised by uncertainty and how they have been
approached. Section 1.4 then specifies the thesis objective and outline.
1.1 TheScienceofClimateChange
The basic cause-effect chain of anthropogenic climate change is straightforward. The burn-
ing of fossil fuels, land-use change, livestock production, and many other human activities
produce greenhouse gases (GHGs), such as CO , CH , N O, and others. This increases the2 4 2
GHG concentration in the atmosphere. GHGs are essentially transparent for the incoming
visible radiation from the sun but absorb and diffusely re-radiate the outgoing infrared ra-
diation from the earth surface. Increased GHG concentrations thus lead to an imbalance
between incoming and outgoing radiant energy. In consequence, earth surface temperature
and the corresponding radiation increase until a new energy balance is reached.
In 2004, for instance, global anthropogenic emissions of the GHGs included in the Ky-
oto protocol amounted to 49GtCO -eq (IPCC, 2007c) and were growing at roughly 3%/yr,2
mainly due to growth of emissions in China. The overall concentration of these GHGs had
increased from 278ppm CO -eq at preindustrial times (around 1850) to 433ppm CO -eq2 2
2(IPCC, 2007a), i.e. by roughly 50%. This had led to an energy imbalance of 1.6 W/m and
an increase of global mean temperature of about 0:7°C. Due to the inertia of the climate

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents