Compression de maillages de grande taille, Efficient compression of large meshes
162 pages
Français

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Compression de maillages de grande taille, Efficient compression of large meshes

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
162 pages
Français
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Sous la direction de Marc Aiguier
Thèse soutenue le 05 janvier 2011: Ecole centrale Paris
Il y a une décennie, le contenu numérique virtuel était limité à quelques applications – majoritairementles jeux vidéos, les films en 3D et la simulation numérique. Aujourd’hui, grâce à l’apparition de cartes graphiques performantes et bon marché, les objets 3D sont utilisés dans de nombreuses applications. A peu près tous les terminaux possédant des capacités d’affichage – des clusters de visualisation haute performance jusqu’aux smart phones – intègrent maintenant une puce graphique qui leur permet de faire du rendu 3D. Ainsi, les applications 3D sont bien plus variées qu’il y a quelques années. On citera par exemple la réalité virtuelle et augmentée en temps réel ou les mondes virtuels 3D. Dans ce contexte, le besoin de méthodes efficaces pour la transmission et la visualisation des données 3D est toujours plus pressant. De plus, la taille des maillages 3D ne cesse de s’accroître avec la précision de la représentation. Par exemple, les scanners 3D actuels sont capables de numériser des objets du monde réel avec une précision de seulement quelques micromètres, et génèrent des maillages contenant plusieurs centaines de millions d’´el´ements. D’un autre côté, une précision accrue en simulation numérique requiert des maillages plus fins, et les méthodes massivement parallèles actuelles sont capables de travailler avec des milliards de mailles. Dans ce contexte, la compression de ces données – en particulier la compression de maillages – est un enjeu important. Durant la décennie passée, de nombreuses méthodes ont été développées pour coder les maillages polygonaux. Néanmoins, ces techniques ne sont plus adaptées au contexte actuel, car elles supposentque la compression et la d´ecompression sont des processus sym´etriques qui ont lieu sur un mat´erielsimilaire. Dans le cadre actuel, au contraire, le contenu 3D se trouve cr´e´e, compressé et distribué par des machines de hautes performances, tandis que l’exploitation des données – par exemple, la visualisation – est effectuée à distance sur des périphériques de capacité plus modeste – éventuellement mobiles – qui ne peuvent traiter les maillages de grande taille dans leur int´egralité. Ceci fait de lacompression de maillage un processus intrinsèquement asymétrique.Dans cette thèse, notre objectif est d’étudier et de proposer des méthodes pour la compression de maillages de grande taille. Nous nous intéressons plus particulièrement aux méthodes d’accès aléatoire, qui voient la compression comme un problème intrinsèquement asymétrique. Dans ce modèle, le codeur a accès à des ressources informatiques importantes, tandis que la décompression estun processus temps réel (souple) qui se fait avec du matériel de plus faible puissance. Nous décrivons un algorithme de ce type et l’appliquons au cas de la visualisation interactive. Nous proposons aussi un algorithme streaming pour compresser des maillages hexaèdriques de très grande taille utilisés dans le contexte de la simulation numérique. Nous sommes ainsi capables decompresser des maillages comportant de l’ordre de 50 millions de mailles en moins de deux minutes, et en n’utilisant que quelques mégaoctets de mémoire vive. Enfin, nous proposons, indépendamment de ces deux algorithmes, un cadre théorique général pour améliorer la compression de géométrie. Cet algorithme peut être utilisé pour développer des méthodes de prédiction pour n’importe quel algorithme basé sur un paradigme prédictif – ce qui est la cas dela majorité des méthodes existantes. Nous dérivons ainsi des schémas de prédictions compatibles avec plusieurs méthodes de la littérature. Ces schémas augmentent les taux de compression de 9% enmoyenne. Sous des hypothèses usuelles, nous utilisons aussi ces résultats pour prouver l’optimalité de certains algorithmes existants.
-Mathématiques appliquées
-Modélisation en 3 dimensions
-Maillages hexaédriques
A decade ago, 3D content was restricted to a few applications – mainly games, 3D graphics andscientific simulations. Nowadays, thanks to the development cheap and efficient specialized renderingdevices, 3D objects are ubiquitous. Virtually all devices with a display – from a large visualizationclusters to smart phones – now integrate 3D rendering capabilities. Therefore, 3D applications arenow far more diverse than a few years ago, and include for example real-time virtual and augmentedreality, as well as 3D virtual worlds. In this context, there is an ever increasing need for efficient toolsto transmit and visualize 3D content.In addition, the size of 3D meshes always increases with accuracy of representation. On one hand,recent 3D scanners are able to digitalize real-world objects with a precision of a few micrometers, andgenerate meshes with several hundred million elements. On the other hand, numerical simulationsalways require finer meshes for better accuracy, and massively parallel simulation methods now generatemeshes with billions of elements. In this context, 3D data compression – in particular 3D meshcompression – services are of strategic importance.The previous decade has seen the development of many efficient methods for encoding polygonalmeshes. However, these techniques are no longer adapted to the current context, because they supposethat encoding and decoding are symmetric processes that take place on the same kind of hardware.In contrast, remote 3D content will typically be created, compressed and served by high-performancemachines, while exploitation (e.g. visualization) will be carried out remotely on smaller – possiblyhand held – devices that cannot handle large meshes as a whole. This makes mesh compression anintrinsically asymmetric process.Our objective in this dissertation is to address the compression of these large meshes. In particularwe study random-accessible compression schemes, that consider mesh compression as an asymmetricproblem where the compressor is an off-line process and has access to a large amount of resources,while decompression is a time-critical process with limited resources. We design such a compressionscheme and apply it to interactive visualization.In addition, we propose a streaming compression algorithm that targets the very large hexahedralmeshes that are common in the context of scientific numerical simulation. Using this scheme, we areable to compress meshes of 50 million hexahedra in less than two minutes using a few megabytes ofmemory.Independently from these two specific algorithms, we develop a generic theoretical framework toaddress mesh geometry compression. This framework can be used to derive geometry compressionschemes for any mesh compression algorithm based on a predictive paradigm – which is the case of thelarge majority of compression schemes. Using this framework, we derive new geometry compressionschemes that are compatible with existing mesh compression algorithms but improve compressionratios – by approximately 9% on average. We also prove the optimality of some other schemes underusual smoothness assumptions.
-Applied Mathematics
-3-D Modeling
-Hexahedral meshes
Source: http://www.theses.fr/2011ECAP0001/document

Sujets

Informations

Publié par
Nombre de lectures 104
Langue Français
Poids de l'ouvrage 63 Mo

Extrait

`THESE
Ecole Centrale des Arts
et Manufactures
pr´esent´ee parEcole Centrale Paris
Cl´ement COURBET
pour l’obtention du
GRADE de DOCTEUR
Sp´ecialit´e: Informatique
Laboratoire: Math´ematiques Appliqu´ees aux Syst`emes (MAS)
Compression de Maillages
de Grande Taille
Efficient Compression of Large Meshes
Jury: MM. Bruno L´evy Pr´esident
Pierre Alliez Rapporteur
Peter Lindstrom Rapporteur
Guillaume Lavou´e Examinateur
Jean-Philippe Nomin´e Examinateur
S´ebastien Valette Examinateur
Marc Aiguier Directeur
C´eline Hudelot Encadrante
tel-00594233, version 1 - 19 May 20112
tel-00594233, version 1 - 19 May 20113
Abstract
A decade ago, 3D content was restricted to a few applications – mainly games, 3D graphics and
scientific simulations. Nowadays, thanks to the development cheap and efficient specialized rendering
devices, 3D objects are ubiquitous. Virtually all devices with a display – from a large visualization
clusters to smart phones – now integrate 3D rendering capabilities. Therefore, 3D applications are
now far more diverse than a few years ago, and include for example real-time virtual and augmented
reality, as well as 3D virtual worlds. In this context, there is an ever increasing need for efficient tools
to transmit and visualize 3D content.
In addition, the size of 3D meshes always increases with accuracy of representation. On one hand,
recent 3D scanners are able to digitize real-world objects with a precision of a few micrometers, and
generate meshes with several hundred million elements. On the other hand, numerical simulations
always require finer meshes for better accuracy, and massively parallel simulation methods now gen-
erate meshes with billions of elements. In this context, 3D data compression – in particular 3D mesh
compression – services are of strategic importance.
The previous decade has seen the development of many efficient methods for encoding polygonal
meshes. However,thesetechniquesarenolongeradaptedtothecurrentcontext,becausetheysuppose
that encoding and decoding are symmetric processes that take place on the same kind of hardware.
In contrast, remote 3D content will typically be created, compressed and served by high-performance
machines, while exploitation (e.g. visualization) will be carried out remotely on smaller – possibly
hand held – devices that cannot handle large meshes as a whole. This makes mesh compression an
intrinsically asymmetric process.
Ourobjectiveinthisdissertationistoaddressthecompressionoftheselargemeshes. Inparticular
we study random-accessible compression schemes, that consider mesh compression as an asymmetric
problem where the compressor is an off-line process and has access to a large amount of resources,
while decompression is a time-critical process with limited resources. We design such a compression
scheme and apply it to interactive visualization.
In addition, we propose a streaming compression algorithm that targets the very large hexahedral
meshes that are common in the context of scientific numerical simulation. Using this scheme, we are
able to compress meshes of 50 million hexahedra in less than two minutes using a few megabytes of
memory.
Independently from these two specific algorithms, we develop a generic theoretical framework to
address mesh geometry compression. This framework can be used to derive geometry compression
schemesforanymeshcompressionalgorithmbasedonapredictiveparadigm–whichisthecaseofthe
large majority of compression schemes. Using this framework, we derive new geometry compression
schemes that are compatible with existing mesh compression algorithms but improve compression
ratios – by approximately 9% on average. We also prove the optimality of some other schemes under
usual smoothness assumptions.
tel-00594233, version 1 - 19 May 20114
R´esum´e
Ilyauned´ecennie,lecontenunum´eriquevirtuel´etaitlimit´e`aquelquesapplications–majoritairement
lesjeuxvid´eos, lesfilmsen3Detlasimulationnum´erique. Aujourd’hui, graˆce`al’apparitiondecartes
graphiques performantes et bon march´e, les objets 3D sont utilis´es dans de nombreuses applications.
Apeupr`estouslesterminauxposs´edantdescapacit´esd’affichage–desclusters devisualisationhaute-
performance jusqu’aux smart phones – int`egrent maintenant une puce graphique qui leur permet de
faire du rendu 3D. Ainsi, les applications 3D sont bien plus vari´ees qu’il y a quelques ann´ees. On
citera par exemple la r´ealit´e virtuelle et augment´ee en temps r´eel ou les mondes virtuels 3D. Dans ce
contexte, le besoin de m´ethodes efficaces pour la transmission et la visualisation des donn´ees 3D est
toujours plus pressant.
De plus, la taille des maillages 3D ne cesse de s’accroˆıtre avec la pr´ecision de la repr´esentation.
Par exemple, les scanners 3D actuels sont capables de num´eriser des objets du monde r´eel avec une
pr´ecision de seulement quelques microm`etres, et g´en`erent des maillages contenant plusieurs centaines
de millions d’´el´ements. D’un autre cˆot´e, une pr´ecision accrue en simulation num´erique requiert des
maillagesplusfins,etlesm´ethodesmassivementparall`elesactuellessontcapablesdetravailleravecdes
milliards de mailles. Dans ce contexte, la compression de ces donn´ees – en particulier la compression
de maillages – est un enjeu important.
Durant la d´ecennie pass´ee, de nombreuses m´ethodes ont ´et´e d´evelopp´ees pour coder les maillages
polygonaux. N´eanmoins, ces techniques ne sont plus adapt´ees au contexte actuel, car elles supposent
que la compression et la d´ecompression sont des processus sym´etriques qui ont lieu sur un mat´eriel
similaire. Dans le cadre actuel, au contraire, le contenu 3D se trouve cr´e´e, compress´e et distribu´e
par des machines de hautes performances, tandis que l’exploitation des donn´ees – par exemple, la
visualisation–esteffectu´eea`distancesurdesp´eriph´eriquesdecapacit´eplusmodeste–´eventuellement
mobiles – qui ne peuvent traiter les maillages de grande taille dans leur int´egralit´e. Ceci fait de la
compression de maillage un processus intrins`equement asym´etrique.
Dans cette th`ese, notre objectif est d’´etudier et de proposer des m´ethodes pour la compression
de maillages de grande taille. Nous nous int´eressons plus particuli`erement aux m´ethodes d’acc`es
al´eatoire, qui voient la compression comme un probl`eme intrins`equement asym´etrique. Dans ce
mod`ele, lecodeuraacc`esa`desressourcesinformatiques importantes, tandisquelad´ecompression est
un processus temps r´eel (souple) qui se fait avec du mat´eriel de plus faible puissance. Nous d´ecrivons
un algorithme de ce type et l’appliquons au cas de la visualisation interactive.
Nousproposonsaussiunalgorithmestreaming pourcompresserdesmaillageshexa`edriquesdetr`es
grande taille utilis´es dans le contexte de la simulation num´erique. Nous sommes ainsi capables de
compresser des maillages comportant de l’ordre de 50 millions de mailles en moins de deux minutes,
et en n’utilisant que quelques m´egaoctets de m´emoire vive.
Enfin, nous proposons, ind´ependamment de ces deux algorithmes, un cadre th´eorique g´en´eral
pour am´eliorer la compression de g´eom´etrie. Cet algorithme peut ˆetre utilis´e pour n’importe quel
algorithme bas´e sur un paradigme pr´edictif – ce qui est la cas de la majorit´e des m´ethodes existantes.
Nous d´erivons ainsi des sch´emas de pr´edictions compatibles avec plusieurs m´ethodes de la litt´erature.
Ces sch´emas augmentent les taux de compression de 9% en moyenne. Sous des hypoth`eses usuelles,
nous utilisons aussi ces r´esultats pour prouver l’optimalit´e de certains algorithmes existants.
tel-00594233, version 1 - 19 May 20115
Acknowledgments
I would like to begin by thanking Jean-Philippe Nomin´e, by whom I was introduced to the field of
visualization. Without him, I would never have though about doing this Ph.D in the first place.
Thanks to Marc and C´eline for having advised me during my PhD. They have constantly driven
me forward and given me the freedom to choose the particular aspects of my research on which I
wanted to focus. They also have provided me with a number of opportunities to travel and meet
people.
I am thankful to Pierre Alliez and Peter Lindstrom who have accepted to review the manuscript
and whose comments have helped in improving my dissertation, as well as all the members of the
jury,thanks to whom my defense was particularly enjoyable. I am also grateful to all the people who
have written high quality papers that helped me get started in the field of geometry processing, and
later develop my knowledge in that domain.
I would like to thank everyone at Lawrence Livermore National Laboratory – in particular Dan,
Martin, Ming and Peter – for having made my stay here a very nice and comfortable one. The time
I spent in the United States was a great opportunity for me to discover a complete new world and
meet very interesting people. The Cottons provided me with a room and

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents