Condensing on metric spaces [Elektronische Ressource] : modeling, analysis and simulation / von Mostafa Zahri
70 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Condensing on metric spaces [Elektronische Ressource] : modeling, analysis and simulation / von Mostafa Zahri

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
70 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

CONDENSING ON METRIC SPACESMODELING, ANALYSIS AND SIMULATIONDissertationzur Erlangung des Doktorgradesder NaturwissenschaftenDr. phil. nat.vorgelegt beim Fachbereich Informatik und Mathematikder Johann Wolfgang Goethe Universitätin Frankfurt am Mainvon1Dipl. Math./B.Sc. Stat. Mostafa Zahri(Geb. in Taourirt, Marokko)Frankfurt am MainMärz 20091Corresponding author: zahri@gmx.netAbstractIn this work, we extend the Hegselmann and Krause (HK) model, presented in [16]to an arbitrary metric space. We also present some theoretical analysis and somenumerical results of the condensing of particles in finite and continuous metricspaces. For simulations in a finite metric space, we introduce the notion "randommetric" using the split metrics studies by Dress and al. [2, 11, 12].KeywordsCondensing, forming a group, multi agents system, discrete dynamical system, col lective intelligence, manifold and geodesic, random metric, metric spaces.1ContentsABSTRACT AND KEYWORDS 1LIST OF FIGURES 2INTRODUCTION 41 CONDENSING ON FINITE METRIC SPACE 71.1 Condensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.3 Random metric on finite metric space . . . . . . . . . . . . . . . . 121.3.1 Extremal pseudometrics . . . . . . . . . . . . . . . . . . . 121.3.2 Algorithms for the construction of random metrics . . . . . 151.3.3 Numerical simulations of random metrics . . . . . . . . . .

Sujets

Informations

Publié par
Publié le 01 janvier 2009
Nombre de lectures 70
Langue English
Poids de l'ouvrage 3 Mo

Extrait

CONDENSING ONMETRICSPACES
MODELING, ANALYSIS ANDSIMULATION

Dissertation
zur Erlangung des Doktorgrades
der Naturwissenschaften
Dr. phil. nat.

vorgelegt beim Fachbereich Informatik und Mathematik
der Johann Wolfgang Goethe-Universität
in Frankfurt am Main

von
1
Dipl. Math./B.Sc. Stat. Mostafa Zahri
(Geb. in Taourirt, Marokko)

Frankfurt am Main
März 2009

1
Corresponding author: zahri@gmx.net

Abstract
In this work, we extend the Hegselmann and Krause (HK) model, presented in [16]
to an arbitrary metric space.We also present some theoretical analysis and some
numerical results of the condensing of particles in finite and continuous metric
spaces. Forsimulations in a finite metric space, we introduce the notion "random
metric" using the split metrics studies by Dress and al. [2, 11, 12].

Keywords
Condensing, forming a group, multi-agents system, discrete dynamical system,
collective intelligence, manifold and geodesic, random metric, metric spaces.

1

Contents

ABSTRACT ANDKEYWORDS

LIST OFFIGURES

INTRODUCTION

1

2

CONDENSING ON FINITE METRIC SPACE
1.1 Condensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Convergence .. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Randommetric on finite metric space. . . . . . . . . . . . . . . .
1.3.1 Extremalpseudometrics .. . . . . . . . . . . . . . . . . .
1.3.2 Algorithmsfor the construction of random metrics. . . . .
1.3.3 Numericalsimulations of random metrics. . . . . . . . . .
1.4 Numericalsimulations of condensing sequences. . . . . . . . . .
1.4.1 Simulationson an Euclidean finite metric space. . . . . . .
1.4.2 Simulationsin a finite circular metric space. . . . . . . . .
1.4.3 Simulationswith respect to a random metric .. . . . . . . .
1.4.4 simultaneouslycondensing with respect to a random metric

CONDENSING IN CONTINUOUS METRIC SPACE
2.1 Condensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Convergence .. . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 NumericalSimulations .. . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Condensingon the real line .. . . . . . . . . . . . . . . . .
2.3.2 Condensingon the unit circle. . . . . . . . . . . . . . . .
2.3.3 Condensingon the real plane. . . . . . . . . . . . . . . . .
2.3.4 Segregationsequences .. . . . . . . . . . . . . . . . . . .
2.3.5 simultaneouslycondensing on the unit circle. . . . . . . .

CONCLUDING REMARKS

BIBLIOGRAPHY

2

1

2

4

7
7
9
12
12
15
20
23
23
28
33
34

41
41
45
47
48
51
55
60
63

65

66

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

Euclidean metric vector, NP=25, and 50.. . . . . . . . . . . . . . .
Random metric vector, NP=25, and 50.. . . . . . . . . . . . . . . .
Euclidean metric mesh, NP=25, and 50.. . . . . . . . . . . . . . .
Random metric mesh, NP=25, and NP=50.. . . . . . . . . . . . . .
(Uniform) Random metric contour, NP=50.. . . . . . . . . . . . .
(Normal) Random metric contour NP=50.. . . . . . . . . . . . . .
Condensing in an euclidian finite metric space (sim. (a)).. . . . . .
Condensing in an Euclidian finite metric space (sim. (b)). . . . . .
Condensing in an euclidian finite metric space (sim. (c)).. . . . . .
Condensing in a geodesic finite metric space (sim. (a)). . . . . . .
Condensing in a geodesic finite metric space (sim. (b)). . . . . . .
Condensing in a geodesic finite metric space (sim. (c)). . . . . . .
Condensing in a geodesic finite metric space (sim. (a,b, c)). . . . .
Condensing in a (random) metric space, forε= 0.182508(sim. (a))
Condensing in a (random) metric space, forε= 0.200761(sim. (b))
Condensing in a (random) metric space, forε= 0.254162(sim. (c))
Distances at limit for sim.(a) and (b). . . . . . . . . . . . . . . . .
i
Cardinal of supportmat limit for sim.(a) and (b). . . . . . . . . .
Energy of sim. (a), (b) and (c) in diff. (random) metric spaces.. . .
simultaneously condensing with respect to different random metrics
Mean energy of 1000 simultaneously sim. resp. to random metrics..

17
19
20
21
22
22
25
26
27
29
30
31
32
35
36
37
38
38
39
40
40

Density of condensing measures on the real line (sim. (a)).49. . . . .
Density of condensing measures on the real line (sim. (b)). . . . .50
Condensing of particles on a one dimensional manifold (sim. (a)).. 52
Condensing of particles on a one dimensional manifold (sim. (b)).. 53
Condensing of particles on a one dim. manifold (sim. (a) and (b)).. 54
Density of condensing of particles on real plane (sim. (a))56. . . . .
Contour of the density of the condensing on real plane (sim. (a)). .57
Density of condensing of particles on real plane (sim. (b)). . . . .58
Contour of the density of the condensing on real plane (sim. (b))59. .
Density (right) and spatial position (left) of segregation. (sim. (a)).. 61
Density (right) and spatial position (left) of segregation. (sim. (b)).. 62
simultaneously condensing on the unit circle for the average model (HK).63
simultaneously condensing on the unit circle for the energy model.. 64

3

INTRODUCTION

The present study is motivated by work of Hegselmann and Krause (HK) on
consensus dynamics [15], where agents simultaneously move to the barycenter of all
agents in an epsilon neighborhood.The final state may be consensus, where all
agents meet at the same position or grouping several classes of agents such that all
agents in the same class maintain the same position and agents in different classes
are at a distance greater than or equal to epsilon.In this work, we are interested to

extend the HK model given as example by [16, 17] to a metric space. Observe that,
the barycenter of a measuremminimizes the epsilon-energy of a position:
Z
2
eε(x, m) =d(x, y)m(dy),
d(x,y)≤ε

where for the HK dynamics,d(∙,∙)is an Euclidean distance. This observation is the
starting point for our present study to generalize the HK model. We

1. replacethe Euclidean space by an arbitrary metric space, and

2. letthe agents move to where the local energy is minimal within an epsilon
neighborhood.

Because of the second claim, this does not generalize HK dynamics, as it is already
demonstrated by two agents and Euclidean metric:Two agents may decrease the
energy to zero by jumping either to the same place, or to different places if the
distance exceeds epsilon.It is important to note that our dynamics, because of
claim 2, is not a deterministic one.Furthermore, the convergence of the process of
"condensing", as we call it, is not guaranteed.This fact can be seen in the case of
two agents, they may exchange there position for ever, with periodic local energy.
In order to be able to prove convergence, we deviate from HK in another way

3. Agentsdo not move simultaneously but one at a time in an arbitrary order.
By doing so, they decrease the total epsilon energy:

Z
Eε(m) =eε(x, m)m(dx),
X
which guaranties the convergence and in fact zero energy after finitely many steps.
It is also important to note that the arbitrary order of action of different agents

4

Introduction

5

introduces yet another source of indeterminacy.Such indeterminacy gives the
opportunity for stochastic investigations, which however are not part of the present
study. Ourconcern in this thesis is the introduction of a new class of dynamical
systems-together with some elementary analysis and a number of numerical
simulations. Severalauthors explain consensus dynamics in the context of emergence,
see for example [9, 20].We shall briefly discuss in how far our model responds to
the challenge of emergence.

Ants live in large populations.These population show a complicated and strict
division of labor for the individual ant, which on the one hand is not determined
by the genetic structure of the single ant, and on the other hand makes the whole
population react effectively to all kinds of events as if steered by some clever and
experienced brain, which however does not exist.The division of labor, which
makes an ant become a soldier, and another one a messenger is called emergent.It is
very strictly and very stable, but one does not detect it as a program in the individual.
Another example is demonstrated in the case of cells.Although all cells in the
human being have the same DNA they diversify into different functions to build
the human body.Therefore, the organization which results in this diversification is
called emergent. That one cell becomes a brain cell and another one a liver cell may
depend but on its ambient: for example the pressure from faster growing cells on top
of one cell may cause it to become a brain cell 

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents