Data compression in ultrasound computed tomography [Elektronische Ressource] / von Rong Liu
182 pages
English

Data compression in ultrasound computed tomography [Elektronische Ressource] / von Rong Liu

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
182 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Data CompressioninUltrasound Computed TomographyZur Erlangung des akademischen Grades einesDOKTOR-INGENIEURSvon der Fakulta¨t fu¨rElektrotechnik und Informationstechnikder Universita¨t Karlsruhe (TH)genehmigteDISSERTATIONvonDipl.-Ing. Rong Liugeboren in Xi’anTag der mu¨ndlichen Pru¨fung: 14.04.2011Hauptreferent: Prof. Dr. rer. nat. Olaf Do¨sselKorreferent: Prof. Dr. rer. nat. Hartmut GemmekeIch versichere wahrheitsgema¨ß, die Dissertation bis auf die dortangegebene Hilfe selbsta¨ndig angefertigt, alle benutzten Hilfsmittelvollsta¨ndig und genau angegeben und alles kenntlich gemacht zuhaben, was aus Arbeiten anderer und eigenen Vero¨ffentlichungen¨unvera¨ndert oder mit Anderungen entnommen wurde.(Rong Liu) Karlsruhe, den Ma¨rz 9, 2011AbstractThelargeamountofdataintheKarlsruhe3DUltrasoundComputedTomography (USCT) ofabout 20 GBytesper3Ddatasethastobere-duced considerably to accelerate the data acquisition and analysis,and to reduce the necessary storage space. Ultrasound signals in-stead of images were compressed. The state-of-the-art and newlyproposed compression methods were analyzed and implemented.Asoftware system was designed tosupport the development of datacompression methods. A new lossless data compression, i.e. acascade bit-wise run length method, was developed and comparedwith the state-of-the-art lossless data compression methods. Lossycompression methods were recommended for a higher compressionratio.

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 95
Langue English
Poids de l'ouvrage 9 Mo

Extrait

Data Compression
in
Ultrasound Computed Tomography
Zur Erlangung des akademischen Grades eines
DOKTOR-INGENIEURS
von der Fakulta¨t fu¨r
Elektrotechnik und Informationstechnik
der Universita¨t Karlsruhe (TH)
genehmigte
DISSERTATION
von
Dipl.-Ing. Rong Liu
geboren in Xi’an
Tag der mu¨ndlichen Pru¨fung: 14.04.2011
Hauptreferent: Prof. Dr. rer. nat. Olaf Do¨ssel
Korreferent: Prof. Dr. rer. nat. Hartmut GemmekeIch versichere wahrheitsgema¨ß, die Dissertation bis auf die dort
angegebene Hilfe selbsta¨ndig angefertigt, alle benutzten Hilfsmittel
vollsta¨ndig und genau angegeben und alles kenntlich gemacht zu
haben, was aus Arbeiten anderer und eigenen Vero¨ffentlichungen
¨unvera¨ndert oder mit Anderungen entnommen wurde.
(Rong Liu) Karlsruhe, den Ma¨rz 9, 2011Abstract
ThelargeamountofdataintheKarlsruhe3DUltrasoundComputed
Tomography (USCT) ofabout 20 GBytesper3Ddatasethastobere-
duced considerably to accelerate the data acquisition and analysis,
and to reduce the necessary storage space. Ultrasound signals in-
stead of images were compressed. The state-of-the-art and newly
proposed compression methods were analyzed and implemented.
Asoftware system was designed tosupport the development of data
compression methods. A new lossless data compression, i.e. a
cascade bit-wise run length method, was developed and compared
with the state-of-the-art lossless data compression methods. Lossy
compression methods were recommended for a higher compression
ratio. The parameters of discrete wavelet transform, multi-fractal
analysis, continuous wavelet transform, discrete cosine transform
and spiking deconvolution based methods as well as a peak detec-
tion method and its modified version were adapted for data com-
pression with a reduction of noise. Their computational complexi-
ties were compared.
A new evaluation scheme for comparison of compression methods
was proposed. A comparison of reconstructed images instead of
compressed signals was used to evaluate compression methods of
ultrasoundsignals. Asobjectiveimagequalityestimatorsnonrefer-
ence and reference based estimators were investigated and com-
pared. Theoriginalimageachievedwiththeuncompressed datasets
andanidealreference imageachieved withsimulated datasetswere
constructed as reference image. Optical flow based and a commit-
tee model based image quality estimator were newly designed. The
limitations of the optical flow based estimator were discussed. The
committee model based estimator combines the advantages of dif-
ferent state-of-the-art image quality scores.
Finally, a discrete wavelet based data compression method at a
compression ratio 15 was suggested for compression of USCT data-
sets.Acknowledgements
I would like to thank Professor Hartmut Gemmeke and Professor
Olaf Do¨ssel for giving the opportunity to pursue my PhD in Karl-
sruhe Institute of Technology. I benefited many from their great
scientific attitude.
IthankmycolleaguesinInstituteforDataProcessing andElectron-
ics and Institute of Biomedical Engineering. I’m extremely thankful
to my lab members from the project Ultrasound Computed Tomog-
raphy for their constant support and advice throughout the course
of my PhD work.
I also thank my family, especially my husband Jianfeng Xu, my fa-
ther Shuxin Liu, my mother Yuzhen Wu and my son Yiming Xu for
their continuous and generous support.
Last but not least, I would like to express my gratitude to all those
who helped me during the writing of this thesis.
IIContents
Abstract I
Acknowledgements II
List of abbreviation VI
1 Introduction 0
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 0
1.2 Motivation and aim . . . . . . . . . . . . . . . . . . . . . 0
1.3 Contributions of the thesis . . . . . . . . . . . . . . . . . 1
2 Search for suitable compression algorithms 5
2.1 Signal compression in literature . . . . . . . . . . . . . . 5
2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . 5
2.2 Characteristics of 3D USCT . . . . . . . . . . . . . . . . 8
2.2.1 Experimental setup . . . . . . . . . . . . . . . . . 8
2.2.2 Data acquisition . . . . . . . . . . . . . . . . . . . 8
2.2.3 Image reconstruction . . . . . . . . . . . . . . . . 9
2.3 Analysis of ultrasound signals in USCT . . . . . . . . . 12
2.3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Wave equation in tissue . . . . . . . . . . . . . . . 12
2.3.3 Model for A-scans . . . . . . . . . . . . . . . . . . 14
2.3.3.1 Coded excitation . . . . . . . . . . . . . . 14
2.3.3.2 Construction of model . . . . . . . . . . . 15
2.3.4 Multiple scattering . . . . . . . . . . . . . . . . . . 17
2.3.5 Attenuation and dispersion . . . . . . . . . . . . . 20
2.4 New lossless compressions . . . . . . . . . . . . . . . . . 21
2.4.1 Compression based on neighboring A-scans . . . 21
2.4.2 Compression based on neighboring samples . . . 23
2.4.3 Cascading bitwise run length encoding . . . . . . 24
III2.4.4 Lossless compression in frequency domain . . . 26
2.4.5 Validation of adjacent A-scans and samples . . . 26
2.4.6 Validation of bitwise run length encoding . . . . . 28
2.5 Lossy compression methods . . . . . . . . . . . . . . . . 29
2.5.1 Time domain based methods . . . . . . . . . . . . 31
2.5.1.1 Threshold . . . . . . . . . . . . . . . . . . 31
2.5.1.2 IK peak detection . . . . . . . . . . . . . . 32
2.5.1.3 Modified IK algorithm . . . . . . . . . . . 33
2.5.1.4 Spiking deconvolution . . . . . . . . . . . 33
2.5.2 Frequency domain based methods . . . . . . . . 34
2.5.2.1 Discrete cosine transform . . . . . . . . . 34
2.5.3 Time and frequency domain based methods . . . 35
2.5.3.1 Discrete wavelet transform . . . . . . . . 35
2.5.3.2 Multi-fractal analysis . . . . . . . . . . . 36
2.5.3.3 Continuous wavelet transform . . . . . . 37
2.5.4 Comparison of different compression methods . 38
2.6 Properties of adapted lossy compression . . . . . . . . . 42
2.6.1 Computational complexity . . . . . . . . . . . . . 42
2.6.1.1 Theoretical analysis . . . . . . . . . . . . 42
2.6.1.2 Computing time . . . . . . . . . . . . . . 44
2.6.2 Denoising ability of compression methods . . . . 46
2.6.2.1 Simulation of noisy datasets . . . . . . . 46
2.6.2.2 Compression of noisy datasets . . . . . . 46
3 Evaluation of signal compression methods 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.1 An image quality based evaluation method . . . . 50
3.1.2 Terminologies and analysis . . . . . . . . . . . . . 51
3.1.3 Requirements and difficulties . . . . . . . . . . . 54
3.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Image quality estimators in literature . . . . . . . . . . . 56
3.2.1 Subjective estimators . . . . . . . . . . . . . . . . 56
3.2.2 Objective estimators . . . . . . . . . . . . . . . . . 57
3.3 Assessment of no-reference image quality estimators . 59
3.3.1 Selected no-reference estimators . . . . . . . . . . 59
3.3.2 Artificial images and distortions . . . . . . . . . . 61
3.3.3 Analysis results . . . . . . . . . . . . . . . . . . . 62
3.4 Quality estimators with a reference . . . . . . . . . . . . 63
3.4.1 Selected reference based estimators . . . . . . . . 65
3.4.2 An optical flow based estimator . . . . . . . . . . 68
IV3.4.2.1 Optical flow . . . . . . . . . . . . . . . . . 68
3.4.2.2 Design of estimator . . . . . . . . . . . . 69
3.4.2.3 Assessment of performance. . . . . . . . 70
3.4.3 Committee model based estimators . . . . . . . . 70
3.4.3.1 Motivation . . . . . . . . . . . . . . . . . . 70
3.4.3.2 Structure of committee model . . . . . . 72
3.4.3.3 Training process . . . . . . . . . . . . . . 72
3.4.3.4 Training cases . . . . . . . . . . . . . . . 74
3.4.3.5 Simulated distortions in USCT images . 74
3.4.4 Evaluation of reference based estimators . . . . . 76
3.5 Achieving a reference for evaluation . . . . . . . . . . . . 77
3.5.1 Original image based reference . . . . . . . . . . . 77
3.5.1.1 Analysis of original images . . . . . . . . 77
3.5.1.2 Filtered original images . . . . . . . . . . 77
3.5.1.3 Assumptions . . . . . . . . . . . . . . . . 78
3.5.2 Simulated reference . . . . . . . . . . . . . . . . . 78
3.5.2.1 Imaged objects . . . . . . . . . . . . . . . 79
3.5.2.2 Design of an ideal reference . . . . . . . 83
3.5.2.3 Simulated USCT datasets . . . . . . . . . 86
3.5.2.4 Evaluation process . . . . . . . . . . . . . 88
4 Results 90
4.1 Evaluation of data compression by comparing A-scans 90
4.1.1 Compression of synthetic A-scans without noise 90
4.1.2 Compression of noisy A-scans . . . . . . . . . . . 92
4.2 Evaluation of data compression by comparing images . 98
4.2.1 Simulated datasets . . . . . . . . . . . . . . . . . 98
4.2.1.1 Compressed datasets . . . . . . . . . . . 98
4.2.1.2 Scores of standard estimators . . . . . . 107
4.2.1.3 Scores of optical flow based estimator. . 118
4.2.1.4 Scores of the committee model based
estimator . . . . . . . . . . . . . . . . . . 119
4.2.1.5 Filtered original images as reference . . 120
4.2.1.6 Different mother wavelets . . . . . . . . . 123
4.2

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents