Dendritic spines and structural plasticity in Drosophila [Elektronische Ressource] / vorgelegt von Florian Leiß
141 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Dendritic spines and structural plasticity in Drosophila [Elektronische Ressource] / vorgelegt von Florian Leiß

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
141 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Dendritic spines and structural plasticity in Drosophila Dissertation Florian Leiß Dendritic spines and structural plasticity in Drosophila Dissertation der Fakultät für Biologie der Ludwigs-Maximilians-Universität München Angefertigt am Max-Planck-Institut für Neurobiologie, Abteilung Molekulare Neurobiologie, Arbeitsgruppe Dendritische Differenzierung Vorgelegt von Florian Leiß München 2009 Die vorliegende Arbeit wurde zwischen Juni 2005 und März 2009 unter Anleitung von Dr. Gaia Tavosanis am Max-Planck-Institut für Neurobiologie in Martinsried durchgeführt. Erstgutachter: Prof. Dr. Rüdiger Klein Zweitgutachter: Prof. Dr. Benedikt Grothe Dissertation eingereicht am: 19.03.09 Tag der mündlichen Prüfung: 30.07.09 Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbständig und ohne unerlaubte Hilfe angefertigt habe. Ich habe weder anderweitig versucht, eine Dissertation oder Teile einer Dissertation einzureichen beziehungsweise einer Prüfungskommission vorzulegen, noch mich einer Doktorprüfung zu unterziehen.

Sujets

Informations

Publié par
Publié le 01 janvier 2009
Nombre de lectures 34
Langue Deutsch
Poids de l'ouvrage 5 Mo

Extrait







Dendritic spines and
structural plasticity in Drosophila




Dissertation
Florian Leiß






















Dendritic spines and
structural plasticity in Drosophila

















Dissertation
der Fakultät für Biologie
der Ludwigs-Maximilians-Universität München
Angefertigt am Max-Planck-Institut für Neurobiologie,
Abteilung Molekulare Neurobiologie,
Arbeitsgruppe Dendritische Differenzierung


Vorgelegt von
Florian Leiß
München 2009











































Die vorliegende Arbeit wurde zwischen Juni 2005 und März 2009 unter
Anleitung von Dr. Gaia Tavosanis am Max-Planck-Institut für
Neurobiologie in Martinsried durchgeführt.







































Erstgutachter: Prof. Dr. Rüdiger Klein
Zweitgutachter: Prof. Dr. Benedikt Grothe

Dissertation eingereicht am: 19.03.09
Tag der mündlichen Prüfung: 30.07.09



















Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation
selbständig und ohne unerlaubte Hilfe angefertigt habe. Ich habe weder
anderweitig versucht, eine Dissertation oder Teile einer Dissertation
einzureichen beziehungsweise einer Prüfungskommission vorzulegen, noch
mich einer Doktorprüfung zu unterziehen.

München, den 31.07.09

________________




























T a b l e o f C o n t e n t 9
Table of Content



Table of Content 9
Index of figures 10
Abbreviations 11
1 Summary 12
Zusammenfassung 13
2 Introduction 14
3 Material and Methods 27
4 Results 39
5 Discussion 78
6 Appendix 101
7 Acknowledgements 114
8 Literature 115
9 Curriculum vitae Error! Bookmark not defined.






10 I n d e x o f f i g u r e s

Index of figures



Figure 2.1 | Schematic illustration of the olfactory circuit in Drosophila .......................................... 21
Figure 3.1 | Automated images analysis of microglomerular complexes ......... 35
Figure 3.2 | Overview of automated image analysis of brain volume .............. 36
Figure 3.3 | Illustration of relative volumes of calyx and brain ....................................................... 38
Figure 4.1 | Different dendrite model systems................................................ 40
Figure 4.2 | LPTC overview ........................................... 41
Figure 4.3 | Drosophila Lobula Plate Tangential Cells have spines that are enriched in actin 43
Figure 4.4 | Classification of dendritic spines of LPTCs ................................................................. 45
Figure 4.5 | LPTC spines receive synaptic input ............. 46
Figure 4.6 | Dα7 is localized at dendritic spines .............................................................................. 48
Figure 4.7 | Spine density is modulated by Rac1 ............. 49
Figure 4.8 | Mushroom body overview .......................... 51
Figure 4.9 | Actin-enriched microglomeruli in the mushroom body calyx ...................................... 53
Figure 4.10 | Synaptic organization of calycal microglomeruli ........................................................ 55
Figure 4.11 | Acetylcholine receptors in Kenyon cells .... 56
Figure 4.12 | GABAergic interneurons and glial cells are present in the calyx 57
Figure 4.13 | Schematic illustration of a microglomerulus .............................. 59
Figure 4.14 | Microglomeruli differ in their presynaptic constituents ............................................. 60
Figure 4.15 | Microglomeruli differ in their postsynaptic constituents............ 61
Figure 4.16 | Microglomeruli rearrange during early adult life ........................ 63
Figure 4.17 | Overview of automated image analysis of the calyx ................... 64
Figure 4.18 | Microglomeruli rearrange during early adult life ................................ 67
Figure 4.19 | Genetic labelling of selected projection neuron presynaptic sites .............................. 69
Figure 4.21 | No morphological alterations were detected upon chronic exposure to cVA ............ 70
Figure 4.22 | Mushroom body phenotypes can be induced using RNAi......................................... 75
Figure 4.23 | Automated tracing of LPTC dendrites ...................................... 77

Supplemental Figure 6.1 | Spine length and density ..... 102
Supplemental Figure 6.2 | Actin is enriched in spines .................................. 103
Supplemental Figure 6.3 | Ultrastructure of spines in specifically labeled LPTC dendrites ........... 104
Supplemental Figure 6.4 | Ectopically expressed ACh-Receptors ................................................. 105
Supplemental Figure 6.5 | Dα7 immunohistochemistry 106
Supplemental Figure 6.6 | Comparison between the calx in the larva and the adult ..................... 107
Supplemental Figure 6.7 | GABAergic elements in the calyx ........................................................ 108
Supplemental Figure 6.8 | Kenyon Cell dendrites are organized in distinct zones in the calyx ..... 109
Supplemental Figure 6.9 | 3D reconstructions of projection neuron boutons from EM .............. 111
Supplemental Figure 6.10 | 3D reconstructions of Kenyon cell dendrites from EM. ................... 112
Supplemental Figure 6.11 | PN electrophysiology can be modulated genetically .......................... 113

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents