Development of prediction systems using artificial neural networks for intelligent spinning machines [Elektronische Ressource] / Farooq, Assad
214 pages
English

Development of prediction systems using artificial neural networks for intelligent spinning machines [Elektronische Ressource] / Farooq, Assad

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
214 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Development of Prediction Systems Using Arti cial NeuralNetworks for Intelligent Spinning MachinesVon der Fakult at MaschinenwesenderTechnischen Universit at DresdenzurErlangung des akademischen GradesDoktoringenieur (Dr.-Ing.)angenommene DissertationM. Sc. Farooq, Assadgeb. am 19.11.1977 in Faisalabad PakistanTag der Einreichung: 26.01.2010Tag der Verteidigung: 06.05.2010Gutachter: Prof. Dr.-Ing. habil. Dipl.-Wirt. Ing. Chokri CherifProf. Dr.-Ing. Burkhard WulfhorstProf. Dr.-Ing. habil. Thorsten SchmidtVorsitzender der PromotionskommissionAcknowledgmentsI am indebted to many people for the successful completion of this dissertation. First ofall, I owe my deepest gratitude to my supervisor, Prof. Dr.-Ing. habil. Dipl.-Wirt. Ing.Chokri Cherif, for the support and con dence that he has given to me. His vision, ideasand comments on various issues have contributed to the quality of this dissertation.It is an honor for me to thank Prof. Dr. -Ing. Burkhard Wulfhorst, for his acceptance toreferee this dissertation and for giving the valuable suggestions to improve my work.I would like to express my sincere gratitude and appreciation for Dr. Ing. Thomas Pusch,He has been with me through out my Ph.D. as mentor, colleague and editor of this disser-tation. His invaluable advice, continuous suggestions, encouragement and constructivecriticism has made this work possible.

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 18
Langue English
Poids de l'ouvrage 13 Mo

Extrait

Development of Prediction Systems Using Artificial Neural Networks for Intelligent Spinning Machines
Tag der Einreichung: Tag der Verteidigung:
Gutachter:
Von der Fakultät Maschinenwesen
der
Technischen Universität Dresden
zur
Erlangung des akademischen Grades
Doktoringenieur (Dr.Ing.)
angenommene Dissertation
26.01.2010 06.05.2010
M. Sc. Farooq, Assad
geb. am 19.11.1977 in Faisalabad Pakistan
Prof. Dr.Ing. habil. Dipl.Wirt. Ing. Chokri Cherif
Prof. Dr.Ing. Burkhard Wulfhorst
Prof. Dr.Ing. habil. Thorsten Schmidt
Vorsitzender der Promotionskommission
Acknowledgments
I am indebted to many people for the successful completion of this dissertation. First of all, I owe my deepest gratitude to my supervisor, Prof. Dr.Ing. habil. Dipl.Wirt. Ing. Chokri Cherif, for the support and confidence that he has given to me. His vision, ideas and comments on various issues have contributed to the quality of this dissertation.
It is an honor for me to thank Prof. Dr. Ing. Burkhard Wulfhorst, for his acceptance to referee this dissertation and for giving the valuable suggestions to improve my work.
I would like to express my sincere gratitude and appreciation for Dr. Ing. Thomas Pusch, He has been with me through out my Ph.D. as mentor, colleague and editor of this disser tation. His invaluable advice, continuous suggestions, encouragement and constructive criticism has made this work possible. Also I would like to thank my research group fellows for their support, it has been a pleasure working with them. I also like to pay my gratitude to all the employees of Institute of Textile Machinery and High Performance Material Technology, who have made available their support in a number of ways. Espe cially, Mrs. Stohr, Mr. Berndt and Mr. Posselt for helping to carry out the experimental part of this research work. I also like to say thanks to students who worked with me for timely completion of this dissertation.
I am also grateful to Higher Education Commission of Pakistan (HEC) for providing the financial support for this dissertation and German Academic Education Exchange (DAAD) for their extended administrative support.
I am thankful to Rieter Ingolstadt GmbH, for providing me an opportunity to facilitate my research work by providing experimental machines and materials. Especially, Mrs. Corina Wiede for the technical support during my stay in Ingolstadt.
I would also like to extend the deep emotions of appreciation and love to my family members, aunt Salma, brother Engr. Ahmad Farooq his wife and children, Beenish and Huzefa, and to my friends and all those hands lifted to pray for me. A very special acknowledgement to my mother, for being first teacher of my educational career. The foundation laid by her helped me at every stage until the completion of this dissertation. Also for her love, sympathetic support, special prayers and best wishes.
Finally, I dedicate this dissertation to the loving memories of my late father Prof. Dr. Sardar Ali.
Dresden, 25.01.2010
Assad Farooq
10
Tasks of Draw Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
1
5
AutoLeveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
10
5
viii
SymbolsandAbbreviations
SignicanceofDrawFrame
Introduction
Doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Importance of Draw Frame in Spinning Process
Influence of Draw Frame on Following Textile Processes . . . . . . . . . .
. . . . . . . . . . . . . .
14
11
2.3.1
Contents
State of the Art
2
2.3.3
Drafting Process
2.3.6
3.1.1.1
Ideal Drafting versus Real Drafting . . . . . . . . . . . .
2.3.5
2.3.2
2.3.4
3
3.1
3.1.1
Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12
Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Optimization of Draw Frame . . . . . . . . . . . . . . . . . . . . . . . . .
21
19
2.2
2.3
2.1
19
. . . . . . . . . . . . . . . . . . . . . . . . . . .
19
Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Drafting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17
57
. . . . . . . . . . . . . . .
6.1
6.2
. . . . . . . . . . . . . . . .
37
Material Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
49
5
5.1
35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Machine Optimization . . . . . . . . . . . . . . . . . . . . . . . .
25
Material Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of Contents
5.4
Drafting Theories . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
Ring Spun Yarns
3.1.2
ii
. . . . . . . . . . . . . . . . . . . . . . . .
46
41
45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Prediction Modeling
3.3
27
38
Comparison of Neural Network with Other Models . . . . . . . .
36
Evenness, Imperfections and Hairiness
Sliver Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
32
52
56
61
61
63
57
58
Investigations on Leveling Action Point . . . . . . . . . . . . . . . . . . .
48
52
A Brief History of the Field
6
Artificial Neural Networks
5.3
5.3.1
5.4.1
Yarn Manufacturing
4
Objective of the Research
Materials and Methods
5.2.1
5.2.2
5.2
3.3.3
5.4.2
5.4.3
3.3.2
3.3.1
Testing Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Rieter Draw Frame RSBD40
Application to Yarn Manufacturing
Yarn Properties Prediction . . . . . . . . . . . . . . . . . . . . . .
Autoleveling
3.1.1.2
Investigations on Sliver Quality Characteristics . . . . . . . . . . . . . . .
83
. . . . . . . . . . . . . . . . . .
82
. . . . . . . . . . . . . . . . . . . . . . .
81
Classification of ANN . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.8.4.2
6.8.4.1
. . . . . . . . . . . . . . . . . . . . . . . . .
Table of Contents
6.3
6.4
. . . . . . . . . . . . . . . . . . . . . . . .
77
Underfitting and Overfitting . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
80
Optimization of Network Parameters . . . . . . . . . . . . . . . .
80
Network Initialization
77
. . . . . . . . . . . . . .
79
78
74
Feedforward Pass . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .
74
Momentum . . . . . . . . . . . . . . . . . . . . . . . . .
ANN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.8
Training a Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . .
Error Surface . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
iii
Exclusive OR /(XOR) Problem . . . . . . . . . . . . . . . . . . . . . . .
68
6.8.5.3
6.8.5.2
6.8.5.1
71
72
73
LevenbergMarquardt Technique
Learning Rate
71
Recurrent Networks & Networks having Shortcut Connections . .
70
6.8.6
70
64
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
73
6.8.5
Network Structure . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Biological Inspiration
. . . . . . . . . . . . . . . . . . . . . . .
6.8.1
Input Selection
Backward pass
Calculation of Error
Back Propagation
80
79
Problems During Training . . . . . . . .
6.7.3
6.7.1
6.7.2
6.7
Feedforward Network
6.6.1
6.5.2
6.5.1
6.6
6.8.2
6.8.3
6.5
6.8.4
Supervised Learning
Unsupervised Learning
6.6.2
Preprocessing of Data . . . . . . . . . . . . . . . . . . . . . . . .
77
75
90
95
6.12 Software Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table of Contents
Early Stopping . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.4
7.1.3
Comparison Between Polyester and Viscose
6.8.7.2
Regularization
Testing A Trained Network
. . . . . . . . . . . . . . . . . . . . . . .
7
6.8.7.1
Generalization
84
84
iv
6.8.7
6.9
89
84
7.1.7
Comparison Among Materials . . . . . . . . . . . . . . . . . . . . . . . . 110
Infeed Variations
Polyester/Cotton Blends . . . . . . . .
Training and Test Performance of Neural Networks
7.1.1
LAP Influencing Parameters . . . . . . . . . . . . . . . . . . . . . . . . .
Leveling Action Point
6.11 Conclusion . . . . . . .
7.1.6
7.1.5
7.2
7.2.1
7.2.2
7.4.1
7.4.2
7.3
7.1.2
Feeding Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
96
. . . . . . . . . . . . . 119
Selection of Relevant Input Parameters . . . . . . . . . . . . . . . 117
6.10 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . 103
. . . . . . . . . . . . . . . 113
. . . . . . . . . . . . 111
Break Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Sliver Deflection Bars . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4
7.1
. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 117
88
86
. . . . . . . . . . . 108
Break Draft Distance . . . . . . . . . .
. . . . . . . . . . . . . . . .
95
Infeed Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Analysis Using Artificial Neural Networks
Main Draft Distance . . . . . . . . . . . . . . . . . . . . . . . . . 104
Multiple Linear Regression Analysis . . . . . . . . . . . . . . . . . . . . . 114
Cotton Carded . . . . . . . . . . . . . . . . . . . . . . . 127
Polyester/Cotton 50/50 2nd Passage . . . . . . . . . . . 125
Training and Test Performances of Neural Networks . . . . . . . . . . . . 143
8.2
Selection of Relevant Input Parameters . . . . . . . . . . . . . . . 143
Effect of Doublings . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Cotton Combed . . . . . . . . . . . . . . . . . . . . . . . 127
v
. . . . . . . . . 120
Effect of Main Draft Distance . . . . . . . . . . . . . . . . . . . . 139
Effect of Break Draft . . . . . . . . . . . . . . . . . . . . . . . . . 137
8
Effect of Delivery Speed . . . . . . . . . . . . . . . . . . . . . . . 135
. . . . . . . . . . . . . . . . . . . 123
8.2.2.2
8.2.2.1
8.2.2
8.2.2.3
Analysis Using Artificial Neural Networks
8.1.2
8.1.1
8.2.1
Sliver Quality Influencing Parameters . . . . . . . . . . . . . . . . . . . . 134
Effect of Break Draft Distance . . . . . . . . . . . . . . . . . . . . 138
. . . . . . . . . . . . . 144
Interaction effects among influencing variables . . . . . . . . . . . 141
Cotton 2nd Passage . . . . . . . . . . . . . . . . . . . . 121
8.1.4
8.1.3
8.1.6
8.1.5
Performance of the Trained Networks Using Industrial Data . . . 127
Conclusion, Practical Applications and Future Pathways . . . . . . . . . 128
Sliver CV(3m)%
Table of Contents
Leveling Action Point Prediction Function ”NEUROset” . . . . . 130
133
Sliver CVm% . . . . . . . . . . . . . . . . . . . . . . . . 145
CV(1m)% . . . . . . . . . . . . . . . . . . . . . . . . . . 146
. . . . . . . . . . . . . . . . . . . . . . 147
Polyester 2nd Passage
Cotton 1st Passage . . . . . . . . . . . .
7.5.1
7.5
7.4.3.2
Analysis of Sliver Characteristics
7.4.2.3
7.4.2.4
7.4.3.1
7.4.2.1
7.4.2.2
8.1
7.4.3
vi
. . . . . . . . . . . . . . . . . . . . . . 167
Influence of Break Draft . . . . . . . . . . . . . . . . . . . . . . . 154
Table of Contents
Sliver Cohesion . . . . . . . . . . . . . . . . . . . . . . . 149
. . . . . . . . . . . . . . . . . . . . . . . 165
9
9.1
9.2
Yarn Quality Influencing Parameters . . . . . . . . . . . . . . . . . . . . 152
. . . . . . . . . . . . . 160
Influence of Break Draft Distance . . . . . . . . . . . . . . . . . . 155
. . . . . . . . . . . . . . . . . . . . . . . . 161
Miscellaneous Influences . . . . . . . . . . . . . . . . . . . . . . . 157
. . . . . . . . . . . . . . . . . . . . . . 163
8.2.2.4
Analysis of Yarn Quality Using Artificial Neural Networks . . . . . . . . 159
10.2 Concept for Intelligent Spinning Machines
10 Concept Development of Intelligent Spinning Machines
Yarn CV (1m)%
151
Analysis of Yarn Quality
10.1 Applications of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
171
. . . . . . . . . . . . . . . . . 173
9.1.5
9.2.1
9.3
Influence of Delivery Speed
9.2.2
9.1.4
9.1.3
9.1.2
Yarn CV (3m)%
9.2.2.3
9.2.2.2
9.2.2.1
9.2.2.6
9.2.2.5
9.2.2.4
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Yarn Tenacity . . . . . . . . . . . . . . . . . . . . . . . . 166
Analysis Using Artificial Neural Networks
Influence of Main Draft Distance
Yarn Elongation
Selection of Relevant Input Parameters . . . . . . . . . . . . . . . 159
. . . . . . . . . . . . . . . . . . . . . . 162
. . . . . . . . . . . . . . . . . . 156
Yarn CVm%
8.3
Conclusion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Yarn Hairiness
9.1.1
. . . . . . . . . . . . . . . . . . . . . 153
Table of Contents
11 Summary and Outlook
List of Figures
List of Tables
Bibliography
vii
179
183
189
191
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents