Electrocrystallisation of CoFe alloys under the influence of external homogeneous magnetic fields [Elektronische Ressource] / Koza, Jakub Adam
164 pages
English

Electrocrystallisation of CoFe alloys under the influence of external homogeneous magnetic fields [Elektronische Ressource] / Koza, Jakub Adam

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
164 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Electrocrystallisation of CoFe Alloys Under the Influence of External Homogeneous Magnetic Fields An der Fakultät Maschinenwesen der Technischen Universität Dresden zur Erlangung des akademischen Grades Doktoringenieur (Dr.-Ing.) eingereichte Dissertation Dipl.-Ing. Koza, Jakub Adam geb. am: 02.12.1979 in Stalowa Wola, Polen Tag der Einreichung: 27.01.2010 Tag der Verteidigung: 24.06.2010 To my beloved wife Kasia and daughter Ola TABLE OF CONTENTS 1. INTRODUCTION ............................................................................................................. 1 2. STATE OF REASEARCH ............................................................................................... 4 2.1. FUNDAMENTALS OF ELECTRODEPOSITION............................................................ 4 2.1.1. Electrocrystallization.............................................................................................. 4 2.1.2. Mass Transport of Ions to the Electrode Surface ................................................... 5 2.1.3. Nucleation, Growth and Phase Formation of Electrodeposited Layers................. 7 2.2. INFLUENCE OF AN EXTERNAL MAGNETIC FIELD ON THE ELECTRODEPOSITION PROCESS ............................................................................... 15 2.2.1. Magnetically Induced Forces ................................................

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 33
Langue English
Poids de l'ouvrage 56 Mo

Extrait




Electrocrystallisation of CoFe Alloys
Under the Influence of
External Homogeneous Magnetic Fields





An der Fakultät Maschinenwesen
der
Technischen Universität Dresden
zur
Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)
eingereichte Dissertation




Dipl.-Ing. Koza, Jakub Adam
geb. am: 02.12.1979 in Stalowa Wola, Polen


Tag der Einreichung: 27.01.2010
Tag der Verteidigung: 24.06.2010



































To my beloved wife Kasia
and daughter Ola TABLE OF CONTENTS

1. INTRODUCTION ............................................................................................................. 1
2. STATE OF REASEARCH ............................................................................................... 4
2.1. FUNDAMENTALS OF ELECTRODEPOSITION............................................................ 4
2.1.1. Electrocrystallization.............................................................................................. 4
2.1.2. Mass Transport of Ions to the Electrode Surface ................................................... 5
2.1.3. Nucleation, Growth and Phase Formation of Electrodeposited Layers................. 7
2.2. INFLUENCE OF AN EXTERNAL MAGNETIC FIELD ON THE
ELECTRODEPOSITION PROCESS ............................................................................... 15
2.2.1. Magnetically Induced Forces ............................................................................... 15
2.2.2. Classical Magnetohydrodynamic Effect ............................................................... 17
2.2.3. Micro- MHD Effect ............................................................................................... 18
2.2.4. Nucleation, Growth and Phase Formation in the Presence of an External
Magnetic Field ...................................................................................................... 19
2.3. ELECTRODEPOSITION OF Co, Fe AND CoFe ALLOYS............................................ 21
2.3.1. Electrode Kinetics................................................................................................. 21
2.3.2. Properties of the Electrodeposited CoFe Alloy .................................................... 22
3. EXPERIMENTAL SETUP AND PROCEDURES ...................................................... 25
3.1. CELL DESIGN AND ELECTRODES ............................................................................. 25
3.2. ELECTROCHEMICAL METHODS................................................................................ 27
3.3. DEPOSIT CHARACTERISATION ................................................................................. 32
4. RESULTS......................................................................................................................... 34
4.1. INFLUENCE OF AN EXTERNAL HOMOGENEOUS MAGNETIC FIELD ON THE
MASS TRANSPORT DURING ELECTRODEPOSITION............................................. 34
4.1.1. Influence of a Magnetic Field on the Metal Deposition ....................................... 34
4.1.1.1. Cobalt............................................................................................................. 34
4.1.1.2. Iron................................................................................................................. 39
4.1.1.3. Cobalt-Iron Alloys ......................................................................................... 46
4.1.1.4. Summary........................................................................................................ 57
4.1.2. Influence of a Magnetic Field on the Hydrogen Evolution Reaction (HER) and the
pH Value at the Interface...................................................................................... 60
4.1.3. Conclusions regarding the Influence of a Magnetic Field on the Mass Transport
............................................................................................................................... 75
i TABLE OF CONTENTS

4.2. INFLUENCE OF A MAGNETIC FIELD ON THE NUCLEATION AND GROWTH
PROCESSES..................................................................................................................... 76
4.2.1. Cobalt ................................................................................................................... 79
4.2.2. Iron ....................................................................................................................... 82
4.2.3. Cobalt-Iron Alloys ................................................................................................ 88
4.2.4. Summary and Conclusions Regarding the Influence of a Magnetic Field on the
Nucleation and Growth Processes........................................................................ 95
4.3. INFLUENCE OF A MAGNETIC FIELD ON THE PROPERTIES OF DEPOSITED
LAYERS ........................................................................................................................... 99
4.3.1. Chemical Composition of Cobalt-Iron Alloys ...................................................... 99
4.3.2. Morphology......................................................................................................... 102
4.3.2.1. Cobalt and Iron ............................................................................................ 102
4.3.2.2. Cobalt-Iron Alloys....................................................................................... 107
4.3.2.3. Summary...................................................................................................... 111
4.3.3. Structure and Texture ......................................................................................... 114
4.3.4. Magnetic properties............................................................................................ 121
4.3.5. Conclusions Regarding the Influence of a Magnetic Field on the Deposited Layer
Properties ........................................................................................................... 128
5. CONCLUSIONS AND REMARKS ............................................................................ 130
References: ................................................................................................................................. 135



ii LIST OF SYMBOLS

The meaning of symbols used in text:
a – crystal lattice constant
a – activity
a – constant
A – electrode surface area
A – nucleation rate constant
– constant
– roughness (Hurst) exponent
B – magnetic flux density
B – saturation magnetic flux density S
– symmetry parameter (Butler-Volmer)
– width of the peak at half maximum intensity at angle
– growth exponent
c – concentration
c – constant
– molar magnetic susceptibility m
d – diameter
d – interplanar distance hkl
D – diffusion coefficient
D – weighted crystallite size K
– diffusion layer thickness D
– hydrodynamic layer thickness H
e – electron
E – potential
o E – standard potential
f – frequency
f – resonance frequency of quartz oscillator 0
-1
F – Faraday’s constant (96500 Cmol )
F – diffusion driving force D
F – gravity force G
F – Lorentz force L
iii
dbadacbbqLIST OF SYMBOLS

F – paramagnetic concentration gradient force P
F – magnetic field gradient force ? B
H – coercivity c
– overpotential
i – current density
i – exchange current density 0
i – limiting current density lim
I – current
J – magnetic polarisation
J – remanence magnetic polarisation r
J – saturation magnetic polarisation s
k – constant
k – electrochemical equivalent of M M
l – spatial size (length)
l – critical length c
– wave length
m – constant
m – mass
M – molar mass
-6 -1 -1– magnetic permability of a free space (1.26·10 VsA m ) 0
11 -1 -2
– quartz shear modulus (2.947·10 g cm s ) q
n – Overstone number
n – order of reflection
n – Néel’s exponent
N – number of nuclei at saturation (saturation nucleus density) 0
N(t) – number of nuclei at time t
– kinematic viscosity
– incident angle
– fraction of the surface area
– extended are fraction ex
r – radius
iv
mlqhqqmnLIST OF SYMBOLS

-1 -1R – universal gas constant (8.314 JK mol )
Rms – root mean square roughness
– density
t – time
T – temperature
u – time at which nucleus has been born
w(l,t) – surface width
x – atomic (molar) fraction
interaction nergy
z – number of charges taking part in the electrochemical reaction

Abbreviations:
AES – Auger electron spectroscopy
AFM – atomic force microscope
bcc – body centred cubic
BOS – background oriented schlieren
CA – chronoamperogram
CE – counter electrode
CV – cyclic voltamogram
DL – electrochemical double layer
EDX – energy dispersive X-ray spectroscopy
EQCM – electrochemical quartz crystal microbalance

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents