La lecture à portée de main
Description
Sujets
Informations
Publié par | universitat_mannheim |
Publié le | 01 janvier 2011 |
Nombre de lectures | 30 |
Langue | Deutsch |
Poids de l'ouvrage | 1 Mo |
Exrait
ysEssa
zur
eines
in
Banking
Regulation
Inauguraldissertation
akdesErlangunghenademisc
Grades
DoktorsderWirtschaftswissenschaften
der
atersit¨Univ
orgelegtv
Mannheim
von
ManeshKazemiamMary
uarJan
2011
an:Dek
t:Referen
t:Korreferen
agT
der
henundlic¨m
ufung:¨Pr
Prof.
Prof.
Prof.
18.
ii
Dr.
Dr.
Dr.
Martin
eitzP
Ernst-Ludwig
MaugErnst
bruareF
2011
von
Thadden
tswledgmenknoAc
Aboveall,IwouldliketothankmysupervisorErnst-LudwigvonThaddenforthe
excellentguidanceandfortheencouragingfeedbackhegavemeonboththecontentof
myresearchandthewayofpresentingit.Histightschedulenotwithstanding,hewas
accessibleandextremelysupportiveinallaspectsrelatedtotheprocessofgrowinginto
academia.
IwouldalsoliketothankmysecondsupervisorWolfgangBuehlerforhisinsightful
commentsonthefirstessay.Ithankhimforhiskindavailabilityandvaluablesupports
atthetimeIhadjustbeganmyfirststepstowritingthisthesis.
IverymuchenjoyedinteractingwithmycolleaguesattheCenterforDoctoralStudies
inEconomics.IwouldliketothankMichalKowalikforhisinstructivecommentsonthe
firstandthesecondchaptersofthisthesisandtheinspiringdiscussionsaboutbanking
topics.IamespeciallygratefultoJenniferAbel-KochandEdgarVogelwhonotonlyas
colleagueshelpedforthestudyandwritingthethesisbutalsoasthebestfriendstook
careofmeduringhardtimesofsettlingdowninmysecondhome,Germany.Also,I
thankBj¨ornSaßforthegreatcommentsoneditingthethirdchapter.MarionLehnert
andHelgaGebauergreatlysimplifiedmylifebytakingcareofalltheadministrative
duties.
ManyothercolleaguesandfriendshaveashareinthepleasanttimesIspentinMannheim,
especiallyHeikoKarle,SebastianK¨ohne,LisandraFlach,PetraLoerkeandAlessandra
Donini,aswellasMoritzKuhn,ChristophRotheandXiaojianZhaoforourmemorable
momentsofthefirstyearscourseworks.Iamalsoindebtedtoallmycheeringfriends
outsideuniversityforwhomIdidnotalwayshavethetimetheydeserved.
Mywarmestthanksandlovegotomyfamily,whoalwaysinspiredandencouragedme
fromthefarhomelandandborewithmyabsencetheseyears,andtoHenningforbeing
thereformeandforallthehappymomentsinthepastbusymonths.
iii
tstenCon
ductiontroIn1
2ASwitchingModelinBanking
2.1Introduction..................................
2.2TheModel...................................
2.2.1NoAssetSubstitution........................
2.2.2ComparisonoftheTwoRegimes..................
2.3SwitchingStrategiesinaCrossingCase...................
2.3.1TheSwitchingModel.........................
2.3.2TheOptimalStopping-SwitchingModel..............
2.4QuantificationoftheOptimalStrategies..................
2.4.1TwoAlternativeCases........................
2.4.1.1CostlessSwitching.....................
2.4.1.2TooCostlySwitching....................
2.5NumericalExamples.............................
2.5.1GeneralCase:TwoSwitches.....................
2.5.2ACostlessSwitch...........................
2.5.3TooCostlySwitch..........................
2.6Conclusion...................................
Appendix......................................
Figures........................................
3SwitchingModelsforBanking:IsGamblingforResurrectionValid?
3.1Introduction..................................
v
1
55810131515172123232424522526262832
3737
vi
4
CONTENTS
3.2TheOne-PeriodModelwithDiscreteReturn................
3.3TheTwo-PeriodModelwithDiscreteReturn................
3.3.1NoRiskofInsolvency.........................
3.3.2OperatingunderRiskofBankruptcy................
3.4NumericalExamples.............................
3.4.1BankruptcyatFailure........................
3.4.2SolvencyatFailure..........................
3.5EndogenousReinvestment..........................
3.6Conclusion...................................
Appendix......................................
TheTheoriesofBankRegulationandSystemicFailures
4.1Introduction..................................
4.2TheBasicModel:FailuresinBanks.....................
4.2.1TheMoralHazard..........................
4.2.2DepositInsuranceandtheMoralHazard..............
4.2.3IntroducingtheRegulatoryActions.................
4.3TheResolutionofIndividualBankFailures.................
4.3.1TheTime-InconsistencyProblem..................
4.3.2OptimalLiquidityProvision.....................
4.3.3TakeoverasanIncentivesForRiskReduction...........
4.4RegulatingSystemicRisk..........................
4.4.1ContagionandTooMuchRelatedBanks..............
4.4.2TooManyToFail...........................
4.5Macro-PrudentialRegulationPolicies....................
4.5.1DealingwithTMTF.........................
4.5.2TooRelatedToFailandCapitalAdequacy.............
4.5.3TBTFandSystemicTaxing.....................
4.5.4Market-BasedSystemandOtherAlternatives...........
4.6RegulatoryPoliciesintheRecentCrisis...................
4.7Conclusion...................................
39474950545455575860
6161646667686969707374757882828385878788
CONTENTS..Figures
yBibliograph
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
vii
90
93
1Chapter
Inductiontro
Bankingregulationhasdrownspecialattentionofpolicymakers,institutionsandthe
economistssinceyears.Theintegrationofbanksandfinancialmarketsmadefinancial
stabilityextremelydependentonthebankingsystems.Thesystemiccrisesinthepast
decadesmotivatedformsofregulationwhicharemorecloselyassociatedwithprevention
thanwithcompensation.Theneedtoincreasestabilityandtohelpprotecttheinter-
nationalfinancialsystemledtotheBankforInternationalSettlements(BIS)Accordin
1988andtheUnitedStatesofAmerica’snewFederalDepositInsuranceCorporation
ImprovementActof1991.Thesuccessoraccord,BaselII,introducedin2004,aimedto
improveupontheriskinsensitivityoftheBaselI.However,therecentcrisisraisednew
challengesforbankingregulationinadditiontowhathadbeenconsideredpreviously.
Thebankingtheoryandinparticularthetheoriesofbankingregulationhavefocused
ontheriskinessofbanks’portfolio.Therisk-takingbehaviorofbanksanddifferent
situationsofmoralhazardproblemhavebeenthemainconcentration.Thisthesisisa
collectionofthreeessayswhichapplyadifferentperspectivetoquestionsintheliterature
ofbankingregulation.Chapterstwoandthreeanalyzetherisk-takingbehaviorofabank
whichcanchoosebetweentworegimesofoperation.Chapterfouraddstheregulatorinto
thesetupandsurveysthebankingtheoriesforregulatingnotonlyanindividualbank
butalsosystemicrisk-takingamongbanks.Inthefirsttwochapters,twoportfolios
differentintheirexpectedreturnandtherisklevelareavailabletothebank.When
thebankchangestheportfolioitiscalledregimeswitching.Bothchaptersstudythe
bank’srisk-returnpreferencesintheabsenceofoutsiderintervention.Whileinchapter
twotherelationshipbetweenthecash-flowandtheregimechoiceisinvestigatedin
acontinuoustimesetup,inchapterthreetheanalysisiscarriedoutadiscretetime
setup.Theregimechoiceisexaminedwithrespecttothecapitallevelinstaticandalso
dynamicsetups.Moreover,chapterthreequestionsthestandardtheoryof“gamblingfor
resurrection”.Chapterfourcoversregulatorypoliciestocontrolabank’sriskoffailure
1
2
CHAPTER1.ODUCTIONINTRandcollectsmacro-prudentialregulatoryproposalsfordifferentrisk-takingissuesina
system.bankingTheliteraturegenerallydefinesabank-regulatorgame.Thebankoptimizesitsequity
value.Theregulatorplaysasasocialplanerandoptimizesthesocialvalueofthebank,
includingboththeequityvalueanddepositsvalue.Thekeyfeatureisthattheregulator’s
decisionneedtobeincentivecompatiblefortheequityholders.Higherriskcanincrease
theequityvalueofthebankunderdistress.However,theriskyoperatingofthebank
mayhavenegativenetpresentvalue.Astrongregulatorforcesbank-closurebeforethe
bank’snetpresentvaluebecomesnegative.Incasethattheregulatorcancommittoa
policy,sheplaysfirstandannouncestheregulatorypoliciesandtheclosurethreshold.
Giventheclosurethreshold,thebankmakesthedecisionofcapitalstructure.The
bankingregulationtheoriessolvethegamebybackwardinductiontofindtheoptimal
olicies.pregulatoryIncontrasttomostofotherstudies,thisresearchallowsforregimeswitchingduring
abank’slifetime.Anagentchangesitsinvestmentportfoliodependingonpreferences
forriskandreturn,andthecash-flowoftheinvestment.Chaptertwoanalyzesthis
switchingbehaviorforabankoptimizingequityvalueonbehalfofitsshareholders.
Havingdeposits,thebankcanchooseoneofthetworegimesofoperationineachmoment
oftime.Ifthecash-flowisbelowthedepositpayment,thebankhastoinjectmoneyor
gobankrupt.However,bankruptcyandliquidatingassetsarecostlyinthesensethatthe
depositinsurerhastorepaytodepositors.Theriskierregimereturnsahigheroutcome
butwithlowerprobability.Thisregimeraisestheequityvaluewhenthecash-flowis
low.Sincetheequityvalueisstillpositive,thebankhasthechancetooperatewith
lowcash-flow,whatcreatesrisk-incentivesforthebankunderdistress.Nevertheless,the
switchinginvolvessomecostanditisnotalwaysarationaldecisiontobearthiscost
toincreasetherisk.Forahighlevelofthecash-flow,thebankisabletopaythecost.
Thus,thebankswitchestothelessriskyprojects(whatoffersahigherexpectedreturn
withlessuncertainty).Thischaracteristicincreasestheequityvaluecomparingtothe
riskierregimeforlargelevelsofthecash-flow.Therefore,thebankwithhighcash-flow
hassufficientincentivesforrisk-reductionandalwaystakestheopportunityregardless
ofalargeswitchingcost.
Thisresultisunlikethestandardassetsubstitutionopportunity,whichinsistsonbanks’
risk-taking.Iftheswitchingcostreducesandtendstozero,themodelaboveconverges
tothestandardassetsubstitutiontheory.Theothercontributionofthesecondchapter
istobridgethegapbetweenthestochasticswitchingmodelsandthebankingtheories.
Thisproducesthresholdsintermsofthestatevariable,thecash-flow,atwhichthe
regimeofoperationchanges.
Chapterthreestudieshowbanks’willingnesstoengageinriskyinvestmentsrelatesto
theircapital.Thefactthatthecontinuoustimemodeldoesnotgiveaclosedform
3
solutionmotivatesapplyingadiscretetimesetupforfurtheranalysisofthebanks’risk-
takingbehavior.Theotherdifferencefromchaptertwoisthatthebankhastoput
efforttomonitoritscreditorsinordertoincurlessrisk.Makingasaferportfolioby
monitoringcreditorsiscostlyandthebankmayoptimallystopexertingeffort.This
meansthatthebanktakesthemoreriskyprojectwhichbringsahigheroutcomein
thelessprobablecaseofsuccess.Incaseoffailuretheriskyprojectdoesnotreturn
morethanthelessriskyregime.Thestrikingresultisthatthereisanon-monotonic
relationshipbetweenabank’srisklevelanditscapital.Thoughbankersinvestinriskier
projectsindistress,riskybutefficientprojectsarealsoattractivefor“relativelywealthy”
banks.Whenthecapitaldecreases,attheintermediatelevelthebankstopsmonitoring
creditorsandchoosesriskierinvestmentssincetheeffortcostexceedstheexpectedloss
offailure.Nevertheless,asthecapitaldecreasesfurther,thebankreversesitsstrategy
inordertobenefitfromhigherlikelihoodofsuccessbeforefallingintoextremedistress,
wherethecapitallevelissolowthatthebankcanonlysurvivebytakingmorerisk.The
effortcostofmonitoringisthemainsourceofsuchanon-monotonicriskoptimization.
Therobustnesscheckonnon-monetaryeffortcostconfirmstheresult.Inadynamic
setupthenon-monotonicityvanishesduetothebankruptcyatfailure.Thisfindingis
inlinewiththeresultofchaptertwo.Foranintertemporalinvestmentdecision,where
reinvestmentrateislow,abankhighlyindebtpreferstheriskierinvestmentinthehope
short-term.inprofithighofChapterfourreviewstheprocessinwhichbankingregulationtheoriesevolvedfromthe
individualbankregulationtowardsmacro-prudentialregulation.Thechapterbegins
withabasicsetuptoexplainhowtherisk-takingbehaviorcannotbedealtwithout
regulatoryactions.Thechapterintroducestheshareholders’risktakingintheway
discussedinchapterthree.Inaddition,thereismanagerialmoralhazardsuchthata
bank’smanagertakesmoreriskyprojectsbecauseofapecuniaryprivatebenefit.Ifthe
capitalisnotsufficientlylarge,theshareholdersdonotofferanincentivecompatible
contracttothemanager.Thedepositinsuranceguaranteesthedepositors.Taxingthe
bank’soperationpreventssubsidizingbanksbytaxpayers.However,theinsuranceortax
systemincreasetheshareholders’incentivesforrisk-taking,andtheinsurancedoesnot
reducethemanagerialmoralhazard.Theintuitionisthatthebankhastopayforthe
taxorinsuranceoutofitsprofitthatdecreasesitsequityvalue.Thesemarketfailures
requireastrongsupervisoryagenttooptimizeex-antepoliciesagainstrisk-takingand
ex-postresolutionpoliciesincaseofbankfailure.
Itisshownthatthecapitaladequacyandclosurepolicyarenotaseffectiveasexpected
duetothesocialcostofassetliquidation.Partialdepositinsurancecreatesincentivesfor
theuninsuredepositorstomonitorthebankclosely.Alikelyliquidityprovisionbythe
regulatorincreasesthebank’schartervalueandthusreducesincentivesforrisk-taking.
Despitethesepoliciesfocusedonindividualbanks,allowingahealthybanktakeovera
4
CHAPTER1.ODUCTIONINTRfailedfinancialinstitutemotivatesbankstoavoidriskyspeculativeinvestments.Infact,
thisideaconnectstheindividualbankregulationtothesystemicriskregulation.
Thesecondpartinchapterfourarguesthatifabankislarge,orifitisinterconnected
tomanyotherinstitutesand/ormanybankstakerisktogether,thenfailuretransmit
intotheentirebankingsystem.Inthatsituation,healthyinstitutesintheprivatesector
donothaveenoughendowmenttotakeoverthefailedbanks.Theseexternalitieshave
beenseeninthe2007-2009crisis,whatisstudiedinchapterfourwithstatisticsofhuge
paymentsbythegovernment.Thisinspiresbankingregulationtheoriestoconcentrate
onthesystemicriskissues.Theriskcanoriginatefromanexogenouseconomicshock
orfromanendogenousrisk-takingofbanksandtheirsystemicfailures.Thispartof
researchemphasizestherisk-takingduetomoralhazardproblemsthatarisesfromthe
balance-sheet.banks’ofsideassetRewardingschemessuchasgrantingthehealthybankstotakeoverthefailedbanks
areproventomitigatethemoralhazardproblem.Redefiningthecapitaladequacyby
takingintoaccountbanks’contributiontothecollectiverisk-shifting(amongbanks)
caneffectivelyimproveupontherisk-basedcapitalrequirementforanindividualbank
intheBaselII.Asystemictaxpolicyisconfirmedtobeoptimalforregulatingalarge
bankwhichcannotbeclosedinthecircumstancethatthesupervisoryauthorityhas
powertoexpropriatetheshareholders’ownershipandthemanagement.Indeed,for
eachregulatorypolicyrequiresanoptimalimplementationthattakesintoaccountspe-
conditions.cific
Thesethreeessaysrepresentarelevantcontributiontotheliteratureoncetheycombine
severalaspectsofbankingregulationtheories.Theassumptionsaregeneraland,thus,
theresultscanbeappliedtotherealworldsituations.Forinstance,statisticalevidences
areprovidedforthesystemicfailuresituationsinthelastchapter.Insteadofusualone-
sidedattitudeoftheliteraturetotherisk-takingbehaviorofbanks,thisresearchtakes
anunbiasedapproachtoexaminetheadvantagesanddisadvantagesofriskforbanks.
Thus,thefindingssuggestincentivemechanismsconcerningdifferentperspectivesofthe
regulationproblems.Inanutshell,thisthesisfirstemphasizesthecomplexproblems
regardingrisk-takinginthebankingsystemsanddemonstratesnonmonotonicrelation
oftheriskchoicestothebanks’decisivefactors.Next,theoptimalmethodstodealwith
theriskissuesinbothmicroandmacroscalesareanalyzed.
2Chapter
ASwitchingModelinBanking
ductiontroIn2.1
Duringitslifetime,abankmaychangeitsportfolioseveraltimes.Forinstance,an
under-capitalizedbankwhichislikelytodefaultmaychooseariskierportfoliotoincrease
itsequityvalue.Thisbehaviorisknownas“gamblingforresurrection”andmaybea
rationalstrategyifthisistheonlychancetosurvive.Apartfromthistypeofmotivation
tochangetheportfolio,abankmaygenerallychangeitsregimeofoperation.Anew
regimeofoperationmeansthatbothreturnandriskofcash-flowgeneratedbythe
bank’sassetsaredifferentfromtheinitialassetallocation.Althoughtheinitialchoice
ofstrategyhasbeenstudiedextensivelyintheliterature,regimeswitchinghasbeen
.elyrestrictivonlydiscussedInthispaperIinvestigateoptimalswitchingstrategiesofabankhavingthechoice
betweentworegimesofoperationateachmomentintimeinacontinuoustimemodel.
First,Idiscussabank’soperationundereachregimeseparately.Inmybasicsetup,
abankisinsolventwhenitcannotpaythedepositcouponoutofthecash-flow.An
insolventbankclosesdowniftheequityvalueiszero.Thisno-asset-substitutionset-up
issimilartoDecampsetal.(2004)’smodelwithouttheregulatorypart.Thischapter
studiestherelationshipbetweentheequityvalueandtheregimechoiceateachpointin
time.Themaincontributionisthatthewholecharacteristicsoftheportfoliochanges
h.switcregimeainIfindthatlessriskincreasestheequityvalueforthehighercash-flow,asaresultoflarger
expectedreturn.Theeffectisreversedforthelowcash-flowcasesuchthatlessrisk
decreasestheequityvalue.Iinterpretthelowriskregimeaswhenthebankmonitorsits
creditorstokeepthenetpresentvalue(NPV)ofinvestmentspositive.Thisfollowsfrom
the”delegatedmonitoring”ideaofDiamond(1984)wherebanksmonitorinvestments
onbehalfofthedepositors.Subsequently,thebankindistressshirksandchoosesa
riskierportfoliowithlowerexpectedreturn.Theassumptionofthehigherriskand
5
6
CHAPTER2.ASWITCHINGMODELINBANKINGlowerexpectedreturnrulesoutthefirst-orderstochasticdominanceproblem.Next,
knowingabouttheadvantageofeachregimeconditionalonthecash-flowIexamine
theswitchingstrategiesofabankintheabsenceofoutsiderintervention.Iborrowthe
assumptionofDanglandLehar(2004)regardingreversibilityofcostlyswitchingateach
time.oftoinpTohighlighttheintuitionofswitching,IfollowDecampsandDjembissi(2005)whoshow
howthetradeoffbetweenreturnandriskinfluencesassetsubstitutionbehaviorinfirms.
Banksfinancetheirinvestmentsinlargepartsbydeposits.Imperfecttransferabilityof
banks’assetsmaketheirliquidationcostly.Inaddition,profitabilityofbank’sinvest-
mentrequirescostlymonitoringbythebank.Withouttheincentiveforthebankerto
monitor,theNPVoftheinvestmentbecomesnegative.Thisillustratesthatinsuffi-
cientlycapitalizedbanksdonothavetheincentivetomonitorandtheyswitchtothe
higherriskregimeinordertoincreasetheequityvalue.
Toanalyzethebank’sstrategiesIchooseacontinuoustimeframeworkwhichisgenerally
appliedinfinancialliteraturestudyingtheswitchingbehavior.Tosolvetheswitching
model,Iapplythestochasticcontroltechniquesandthegeneralapproachofthedynamic
programmingprinciple.Sincetheexistingmathematicalmodelsdonotcombinethe
optimalswitchingstrategyandthebank’sstoppingproblem,Ihavetofillthegaps
intheanalyticalsolutionwitheconomicalintuitions.Inthesetupofthispaper,the
outflowoftheswitchingproblemisthecash-flownetofthedepositpaymentthatcanbe
negative.Therefore,thebasicassumptionsofVathandPham(2007)arenotsatisfied.
Still,theirexplicitsolutionprovidesanintuitionformycase.Thefreeboundaryproblem
relatedtothevariationalinequalitiesdividethecash-flowstatespaceintothestopping
regionandthecontinuationregion.Pham(2005b)considersthesmooth-fitprinciplefor
thevaluefunctionthroughboundariesofswitchingregions.Havingallhisassumptions,
thisprinciplegivestheboundaryconditionstofindclosedformsofvaluefunctions.Yet,
Pham(2005b)’sresultsareapplicabletomymodelonlywhentheclosurelevelofthe
cash-flowisgiven.Hence,wheretheanalyticalsolutionisnotavailableIpresentan
intuitiveconjectureaboutthemissingcharacteristicoftheobjectivefunction(NPVof
anoperatingbank)andtheboundaryconditionsintermsofthestatevariablecash-flow.
Finally,Iapplyanumericalmethodtosolvethreeexamples:thecostlyswitchingcase,
anextremecaseoftooexpensiveswitching,andtheotherextremecaseofcost-free
switching.Thesimulationsconfirmmyanalyticalresultsregardingtheuniquenessof
switchingpointsforeachregime.Whencapitaldropsbelowacash-flowthresholdthe
bankoperatingunderlessriskyregimeswitchestotheriskierregime.Ifthecapital
decreasesfurtherandfallsbelowaminimumcash-flowlevelthebankcloses.Ifthecapital
increases,aboveanotherthresholdthebankoperatingintheriskyregimeswitchestothe
lessriskyregime.Thethreethresholdsarefeasibleinthewaythattheswitchingregions
donotintersect.However,ifthereisnocostofswitchingthereisauniquethreshold
belowwhichthebankdoesnotmonitorcreditorsandoperatesinriskierregimeaslong
2.1.ODUCTIONINTR7
asthecash-flowisabovetheclosurethreshold.Iftheswitchingistoocostly,thebank
doesnotshirk(frommonitoring)whenthecapitaldecreasesbutstopsoperation.This
happenswhilerisk-reductionandoperatinginGoodregimeismoreprofitableforabank
whenthecapitalraisessufficiently.MyfindingsareinlinewithDanglandLehar(2004)
iftheexpectedreturnsdonotchangefromoneregimeofoperationtotheother.Because
inthesetupofthischaptertheexpectedreturnsplayanimportantrole,theextreme
caseoftoocostlyswitchingistotalydifferentfromtheresultofDanglandLehar(2004).
Theliteratureonthebankrisk-takingiscloselylinkedtotheliteratureonbankingreg-
ulation.Decampsetal.(2004)studythethreepillarsofBaselII(BaselCommittee
(2001))andattempttoclarifyhowmarketdisciplineandsupervisoryactioncancom-
plementcapitaladequacy.Theyassumethatabankchoosesoneoftwodifferentregimes
ofoperation,i.e.onewithahigherreturnandanotheronewithahigherrisk,atthe
verybeginningandfollowsitwithoutswitching.Theyshowhowtheregulatorysystem
canaffecttheinitialdecisionofabanktochooseasaferportfolio.
InthesetupofDanglandLehar(2004)bankersonbehalfofequity-holders1canswitch
theregimeofoperationthroughassetsubstitution.Intheirmodelswitchingiscostlyand
reversiblesuchthatonlytherisklevelcanchangeateachpointoftime.Theyassume
thattheregulatorwhoauditsthebankatrandomtimeintervalswantstopreventasset
substitutionforahigherrisk.Theregulatoryclosurethresholdsallowawell-capitalized
banktoloweritsriskandcontinuetooperateevenifthecash-flowissmallerthanit
wouldbewhenthehighriskportfoliowerechosen.Theycomparethepoweroftwo
exogenousregulations,i.e.BuildingBlock(BB)regulationandaValueatRisk(VaR)
regulatorycapitaladequacy.SinceVaRregulationisrisksensitive,itismoreefficient
thanriskinsensitiveBBcapitaladequacyinpreventinggamblingforresurrection.
Leland(1994)followstheassetsubstitutionargumentofJensenandMeckling(1976).
Hestudiestheoptimalcapitalstructureandfindsthatequity-holdersprefertomakethe
firm’sactivitiesriskierinordertoincreasethefirm’sequityvalueattheexpenseofdebt
value.Inhispaperthedebt-holdersarehurtbyhigherriskinthecaseofunprotected
debtinwhichtheequityvalueisenhancedbygreaterrisk.Buttheoppositeistrue
whenthedebtisprotectedbyapositivenetworthcovenant.Inthiscase,increasing
therisklowerstheequityvalueaswellasthedebtvalue.
LelandandToft(1996a)extendLeland(1994)’smodelandshowthatriskshiftingdis-
appearswhenthetimetomaturityofdebtisshortened,confirmingthatshort-term
debtfacilitatesthediscipliningofbankmanagers.Likewise,Leland(1998)includesa
singleswitchingtoriskyportfoliowithoutanycost.Erricson(1997)assumesaconstant
switchingcostandallowsforanirreversibleswitch.Boththesepapersfocusonthe
optimalcapitalstructurewhiletheassetsubstitutionopportunitycausesagencycosts.
1Inthisliterature,thepossiblefrictionsbetweenbankersandequity-holdersandbetweendepositors
andtheDepositInsurerFoundationareignored.
8
CHAPTER2.ASWITCHINGMODELINBANKING
Toobtainanalyticalsolutions,Iborrowthemethodsfromtheliteratureinstochastic
switchingmodels.DanglandLehar(2004)considertheelementarystoppingmodelsin
whichanagentdecidesoncontinuingorstoppingtheoperationgeneratingastochastic
outcome.Sincethesetypesofentry/exitmodelsarenotdirectlyapplicabletothe
switchingmodel,thesolutionofDanglandLehar(2004)totheswitchingproblemisby
conjecturesonthecontrollimitspolicies.2Thestoppingmodelintheleadingpaperby
BrekkeandOksendal(1994)hasbeendevelopedintoacomputationalmodelbyFackler
(2004).BayraktarandEgami(2007)applyaprobabilisticapproachtowardstheoptimal
switchingprobleminwhichthevaluefunctionischaracterizeddirectly.Theyrelyon
thesocalledcoupledoptimalstoppingproblemsinsteadofthedynamicprogramming
principle.AnalyticallytheswitchingmodelsofPham(2005b)andVathandPham(2007)are
theclosesttomymodel.VathandPham(2007)solvethegeneralswitchingmodelin
whicharegimeisbasicallyreplacedbyanotherregimeinordertomaximizeanobjective
function.Theyuseaviscositysolutionsapproachtodeterminetheoptimalinvestment
decisionforamulti-activityfirm.Theirmethodinvolvesasequenceofstoppingtimes
withregimeshifts.TheyfindtheexplicitsolutionforthetworegimescaseofBrekke
994).(1OksendalandThefollowingsectionintroducesthemodel,explainstheno-asset-substitutioncases.
Section2.3presentstheswitchingmodelandtheoptimalswitching-stoppingstrategies.
Insection2.4thestrategiesarequantifiedforseveralcases.Numericalexamplesare
explainedinsection2.5.Section2.6concludes.Theappendixincludessomeproofsand
solutions.Figuresarepresentedinthelastsection.
delMoThe2.2
Theassetvalueofthebankgeneratescash-flowxwhichisassumedtofollowageomet-
ricBrownianmotion,followingMerton(1974)andLeland(1994).Thebankermakes
decisionsoninvestmentandtheregimeofoperation.Therearetwochoicesofport-
afolios.comEacbinationhoneoftworepresenregimes.tsaTheregimeofrepresenopetativrationeandbankerthecanbankswitchcannotfromoptheeratecurrenundert
aphigherortfoliotomeanofanothercash-floateacwhandmomenalowt.erWhenrisk.theThisbankregimeismonitorscalleditsGood.creditors,itConsequenreceivtlyes,
IcalltheotherregimeBadinwhichthebankstopsmonitoring.Inthiscasetherisk
2SeePham(2005a)forasurveyontheaspectsofstochasticcontrolproblems.
EHT2.2.MODEL
9
increaseswhilethebanklosesthemeanvalue.3Thus,thecash-flowprocessisdenotedby
dx=µGxdt+σGxdωtheGoodregimeisoperating
µBxdt+σBxdωtheBadregimeisoperating
x(0)=x0>0.(2.1)
wherewehaveσG<σBforrisklevels,andfordriftsµG>µB.ωisawhitenoise
vThariablus,e.thedepAssumeositthrate,atalld,isagenequaltsaretorisktheriskneutralfreewithrateran.IninstanterpretingtaneousthediscounGoodtrateregimer.
asoperationunderdelegatedmonitoring,notethatthismonitoringisassumedtobe
costlessortohaveavariablecomponentwhichhasalreadybeensubtractedfromthe
originaldriftofthecash-flow.Inotherwords,µGcouldbeinterpretedasµ−mwhere
mxistheproportionofcash-flowlostinmonitoring.
Whenthebankerclosesthebankatdefault,thebank’sassetsareliquidatedforavalueof
αx,whereαisgivenexogenously.4Becauseweareinariskneutralworld,theexpected
netpresentvalueofthecash-flow(conditionalontheinformationavailableattimet)
hastocoincidewiththecurrentvalueoftheunleveredbank,
∞+Wt=Exte−rτxτdτ=xt,(2.2)
µ−rtflowherewforExallistheassetexpvaluesectationabovopezero,eratorIovneedervanariablearbitragex.Infreeordermotodel,ha5vei.e.apµositiv<re.cash-But
forarealbankholdingdeposits(leveredbank)equation(2.2)nolongerholdsbecause
ofbankruptcyrisk.Inthismodellong-termdepositsarefullyinsured,withtheface
valuenormalizedtoone.Thus,theequity-holdersareresidualclaimants.Thereis
aninstantaneousswitchingcost,k,whichispaidbytheequity-holdersatswitching
ts.momenInthefollowingsubsection,Iconcentrateonthecasewherethebankhasonlyonetype
ofregime.Thiswillintroduceincentivesofthebankforswitchingbetweentworegimes.
Throughout,Iassumeasimpleworldwherethebankoperatesintheabsenceofoutsider
tion.netervin
3Iconsiderageneralcaseratherthanonlyriskshiftingwhichissupposedinthemostofasset
literature.substitution4Notethatαisnotnecessarilylessthan1,sincethestatevariableisthecash-flow.Thisisunlike
toLeland(1994)inwhichthestatevariableistheassetvalueofthefirmandthereisafractional
bankruptcycostorcostofliquidation.
5Theintegralneverconvergesforµ>r.
10CHAPTER2.ASWITCHINGMODELINBANKING
SubstitutionAssetNo2.2.1
Iexplainthesimplestoppingproblemforthebankinthissection.Supposethebank
choosesonetypeofregimeattimet=0,andoperatesforitsentirelifetimewithout
assetsubstitutionandanychangeintheportfolio.Thus,thebankhastheonlyoption
tostopwhenoperationisnolongerbeneficial.Thatmeansassoonastheequity-holders’
wealthbecomesnegative,thebankerstopsoperatingandliquidatestheassets.
Intheabsenceofoutsiderintervention,thebankeronbehalfofequity-holdersabandons
theoperationasthecash-flowdropsbelowthresholdxC.Althoughafirmex-ante
maximizesthevalueofitsassetportfolio,aleveredbankex-post(whendepositsarein
place)maximizestheequityvalue.Inthisframeworktheearningsofthebankfromthe
cash-flow,beforedepositpaymentandextrabenefit,isdeterminedby:
τW(x)=ExCxte−rtdt+e−rτCαxC(2.3)
0wherestoppingtimeτCisarandomvariable,definedasthefirstinstantwherextfalls
belowxC,givenx0=x.ThenWisfoundtypicallybysolvingtheordinarydifferential
6(ODE)equationrW=(1/2)σ2x2Wxx+µxWx+x.(2.4)
is:utionsolgeneralTheW(x)=x+K1xγ1+K2xγ2,
µ−rwhereγ1>1,γ2<0aretherootsof:
(1/2)σ2γ(γ−1)+µγ−r=0,
to:equalusthand−(µ−(1/2)σ2)±(µ−(1/2)σ2)2+2σ2r
=γ.2σThecoefficientsK1,K2aredeterminedbytheboundaryconditions:
W(xC)=αxC,
6RefertoDixitandPindyck(1994)“EquivalentRisk-neutralValuation”,P.121-125.
(2.4)
(2.5)
(2.6)
(2.7)(2.8)
T2.2.MODELEH
and
11
x→+∞,W(x)asy−→mptoticallyr−xµ.(2.9)
Thelatterconditionattributestothecasethatthehighcash-flowpreventsbankruptcy.
Therefore,sincebankruptcyisunlikely,theearningsofthebankconvergestotheasset
valueofanunleveredbankwiththesamecash-flow.
From(2.9)wehaveK1=0,andWisdeterminedby
x1xW(x)=r−µ+(α−r−µ)xC(xC)γ2.(2.10)
Thesecondtermin(2.10)indicatestheoptionvalueassociatedwiththeirreversible
closureatxC.Ascondition(2.9)shows,thisoptionvalueconvergestozeroforahigh
w.cash-floofaluevWithasimilarapproach,Icanfindtheclosedformsforothercontingentclaims,i.e.the
marketvalueofdepositsandthemarketvalueofequity:
•Themarketvalueoftheuninsureddeposits:Incontrasttotheinsured
contractheldbythedepositors,thatisalwaysworth1,thecouponflowdprovided
bythebankisnotinsured.ThemarketvalueoftheuninsureddepositsD(x)isthe
presentvalueofcouponflowr.Wheneverthecash-flowisbelowthecouponflow,
thebankerhastoinjectmoneyintothebankinordertosurvivethesituation.
Sincethisclaimisexposedtothedefaultrisk,theinsurerbearsthedifference
betweentheinsuredvalueandthemarketvalueofthecouponflow,i.e.1−D(x).
Thisisthecurrentvalueofpossiblefutureexpendituresnecessarytoguarantee
thefullfacevaluetodepositorsincaseofbankclosure.7TheclaimD(x)satisfies
w:elobODEthe
rD=(1/2)σ2x2Dxx+µxDx+r.(2.11)
Therefore,D(x)hasapowerfunctionclosedformwithcoefficientsfoundfrom
boundaryconditions.ThefirstboundaryconditionisD(xC)=αxC=W(xC),
alsocalled“absolutepriorityrule”.Accordingtothisrule,theequity-holders
receivenothingfromtheassetvalueattheclosuretime.8Sinceahighamount
ofcash-flowrulesoutdefaultrisk,themarketvalueofdepositsconvergestothe
7ForsimplicityIassumethatthebankpaystheinsurancepremiumequal1−D(x0)attimet=0.
Yet,theinsurancepremiumcouldfollowamorecomplicatedprocess,e.g.aregularpayment.
8IfαxC>1,thenαxC−1isgiventoequity-holders.Butinthiscasethereisnouncertaintyfor
deposits.AsIseelater,alowerclosurethresholdstillincreasesthemarketvalueofequity.Thus,Ican
assumeαxC<1,andabsolutepriorityruleholds.
12
CHAPTER2.ASWITCHINGMODELINBANKING
principal.Hence,anotherboundaryconditionisx→+∞,D(x)→d/r=1.
Then,D(x)isgivenby
D(x)=1+(αxC−1)(x)γ2.(2.12)
xC
•Themarketvalueoftheequity:Beingaresidualclaim,thevalueofequityis
9ybdetermined
E(x)=W(x)−D(x)
xxCxγ2
=r−µ−1+(1−r−µ)(xC).(2.13)
AsinLeland(1994),whenthereisnoprotectionforthedebt,10bankruptcyoccursonly
ifthefirmcannotmeettherequiredinstantaneousdepositpaymentbyissuingadditional
equity,i.e.whentheequityvaluefallstozero.Ofcourse,giventheabsolutepriority
rule,theequityvalueiszeroatclosure.Maximizingthesocialvalueofthebank,W,
givesxC=0.However,thelimitedliabilityofequitypreventsxCfrombeingarbitrarily
small.11Thus,maximizingnonnegativeE(x)forallvaluesofx>xCsetstheclosure
asthreshold0<xc=γ2γ(r−−1µ)<1(γ2<0),(2.14)
2whichistheresultofthe“smooth-pasting”condition
dE/dxC|x=xc=0.(2.15)
(2.14)
(2.15)
Fromequations(2.7)and(2.14),theclosurethresholddependsonriskfreeinterestrate
randtheprocessofcash-flowsuchthat
∂γ2>0,∂γ2<0⇒γB2>γG2,(2.16)
µ∂σ∂
and
∂xc=−r−µ∂γ2<0,
∂σ(γ2−1)2∂σ
(2.16)
(2.17)
9ThevalueofequityisalsofounddirectlyfromE(x)=Ex[0τC(xt−r)e−rtdt].Thesecondorder
differentialequationrE=(1/2)σ2x2Exx+µxEx+x−randappropriateboundaryconditionsgivethe
sameclosedforms.Iwillfollowthisapproachinthenextsection.
10Thedebt(deposit)isinsuredfromthedepositor’spointofview.However,thereisnoconstraint
onthebanktomeettherequiredinstantaneousdepositpayment.
11Still,alowerclosurethresholdraisestheequityvalueasdE/dxC≤0forxC>0.
MODELEHT2.2.
13
whereγi2isparameterγ2associatedwithregimei∈{G,B}.Theclosurethresholdis
notmonotonicinthedriftasthederivativeindicates
∂xcr−µ∂γ2γ2
∂µ=−(γ2−1)2∂µ−γ2−10.(2.18)
Therefore,theclosurethresholddependsontheregimeofoperationandtheparameters.
2.2.2ComparisonoftheTwoRegimes
Havinglearnedaboutthestoppingstrategiesofabankunderasingleregime,nowthe
tworegimes(GoodandBad)canbecompared.As(2.13)shows,theequityvalueisa
convexfunctionofthecash-flow.Forasufficientlyhighvalueofthecash-flowundereach
regimei∈{G,B},Ei(x)asymptoticallyconvergestor−xµi−1whichequalstheasset
valueofanunleveredbankwiththesamecash-flownetofthedepositsprincipalofthe
leveredbank.BecauseµG>µB,theequityvalueunderregimeGoodishigherthanthe
equityvalueunderregimeBadforthehighamountofcash-flow.IfµG=µBtheclosure
ofthebankundertheBadregimeoccursbelowtheclosureundertheGoodregime.
Figure2.1showsthecaseinwhichhigherriskisalwayspreferred,sinceitincreasesthe
valueofequity,EB(x)EG(x).
AsµG>µB,andxCisnotmonotonicwithrespecttodriftµ,thedifferencebetweentwo
driftsyieldsdifferentresults.Whendµ=µG−µBishighcomparedtodσ=σG−σB,
andthedriftcoefficientoftheGoodportfolio,µG,tendstotheriskfreeinterestrater,
thebankwiththeGoodportfolioclosesatalowerthresholdthanthebankwithBad
portfolio.Further,forasufficientlyhighvalueofthecash-flowtheexpectedvalueof
equityundertheGoodregimeishigherthantheexpectedvalueofequityundertheBad
regime.Insuchacase,thebankdefinitelypreferstheGoodportfoliowiththehigher
equityvaluetotheBadportfolio,showninfigure2.2.Alternatively,µG>µBleads
toEG(x)>EB(x)forthehighcash-flowwhilenon-monotonicclosuremayresultin
xG>xB.Thentheequityvaluefunctionsofthetworegimescrossasfigure2.3shows.
Therefore,dependingonthecash-flowlevelthebankmaypreferadifferentregime.With
theintuitionsfromthefigures,thefollowingpropositionsdiscussallcases.Theproofs
endix.apptheinareProposition2.1Assumethatthebankhastwopossibleportfoliochoices:(µG,σG)and
(µB,σB),whereµG>µB,σG<σB.Thenforallxintheoperationareaofthebank,
EG(x)>EB(x)ifandonlyifxG<xB.
endix.appSeeofProProposition2.2AssumetworegimechoicesforthebanksuchthatµG=µB=µ.
ThenxG>xBandEB(x)>EG(x),forallxintheoperationareaofthebank.
14
endix.appSeeofPro
CHAPTER2.ASWITCHINGMODELINBANKING
Ifdriftsoftworegimesareequal,equityvaluefunctionsconvergeasymptoticallytothe
samelineforhighvaluesofcash-flowasfigure2.2shows.Thenextcorollaryregarding
figure2.3followsdirectlyfromthepropositionsabove.
Corollary2.1Necessaryandsufficientconditionsinordertohavecrossingequityvalue
functionsareµG>µBandxG>xB.
ProofForsufficientlyhighvalueofcash-flowwehave
x→+∞,E(x)−→r−xµ−1.
Hence∃M∈Rsuchthat∀x>M,EG(x)>EB(x)iffµG>µB.Fromproposition
2.1,∃m∈Rsuchthat∀x<m,EG(x)<EB(x)iffxG>xB,asxG=xBonly
yieldsEG(x)>EB(x)becauseofahigherdrift.Sinceequityfunctionsarecontinuous,
∃xs∈R,m≤xs≤MsuchthatEG(xs)=EB(xs).Becauseofconvexityofthetwo
equityfunctionsthecrossisunique.
Remark2.1NotethatIdonotconsideranypotentialpreferenceonstrategiesorclo-
sure.Forinstance,Decampsetal.(2004)assumethattheGoodregimedominatesthe
closuredecisionwhichisalwayspreferredtotheBadregime.Toimplementthisassump-
tion,Ineedthatr−1µG>α>r−1µB.ButinthispaperIsupposethatforallpositive
cash-flowstheexpectedvalueofthebank,operatingperpetuallyundereithertheGood
ortheBadportfolio,ispreferredtoclosure.However,thetradeoffbetweenahigher
driftandahigherriskistheimportantfeature.
TakingtheGoodregime,theclosurepointmovesbyanychangeinthedriftandrisk
levelofcash-flow.Thecrossingholdsifftheclosurepointdecreasesbyloweringthe
driftandincreasingtherisklevel.ItmeansIneedconditionsunderwhichthetotal
differentialofxCisnegative,i.e.dxC<0.Sincedµ<0anddσ>0,from(2.17),(2.18)
anddxC=∂∂xµCdµ+∂∂xσCdσ,(2.19)
weseethatdxC<0iff∂γ2
dσ<∂∂γµ2+γ2(γ2−∂γ1)2.(2.20)
dµ∂σ(r−µ)∂σ
areExcludingopportunitiestrivialforcasesadvinanwhictageshtheofeacbankhchoregime.osesForonlyaonehighvregimealueofwiththecertaincash-floty,wtherethe
Onbankerthechootherosesthand,heGoowhendtheregimecashandflowmonitorsistoolow,creditors.onlyThen,survivalisbankruptcyimportanistlessforlikelythe.
lowbank.erThecash-flohighw.riskThatguaranmeanstiestheBadnon-zeroregimeequitisyvmoaluereandattractivmakeesforopabaerationnkinpossibledistress.for
2.3.SWITCHINGSTRATEGIESINACROSSINGCASE
2.3SwitchingStrategiesinaCrossingCase
15
Thelastsectionshowedthatthetworegimesmighthaveadvantagesanddisadvantages
fordifferentvaluesofthecash-flow.Thisresultprovidestheintuitionforswitchingfrom
oneregimeofoperationtoanotherasthecash-flowvaries.Inthissection,assumethat
theparameterssatisfyinequality(2.20)whichyieldcrossingequityfunctionsasshown
2.3.figureinThebankhasthreechoicesateachmoment,i.e.theGoodportfolio,theBadportfolio
orclosure.Unlikeclosure,thetworegimescanbereversiblyabandonedatacost.This
costmaybearbitrarilyhigh,therebyrulingoutswitching.Denotethebank’sthree
possibleactionsby{Stick,Switch,Stop},forstickingtothecurrentregime,switchingto
anotherregime,andstoppingtheoperation,respectively.
andTheLehargeneralo(2004),ptimalinaswitcmohingdelmodelincludingapplieasinlump-sumthiscase.linearFollocostwingofswitcconjectureshing,of“conDangltrol
limitspolicies”indicatetheoptimaldecision.Theintuitionfromourpreviousresults
makcash-floeswconbuttrolthelimitsBadppoliciesortfolioforapplicable.lowerThecash-flobankws.prefersSincethethereGoodispaortfoliolump-sumforhighercost,
asconthetrolcash-limitsflopwisolicyintheleadsintoterioranofintervthealin[StervG,al,SB]theexertingbanksticthekstominimathelcurrenconttrol.regime.AslongIf
cash-flowxfallsbelowSG,thebankwithregimeGoodmustswitchtotheBadregime,
andifxrisesupSBthebankwithregimeBadmustswitchtotheGoodregime.
Althoughthispolicyseemsintuitivelyreasonable,suchaswitching-stoppingmodeldoes
andnotfitLehartothe(2004)formerreferentosuchtering/exitingmodelsmowhicdelshareleadingbasicallytothecondifferentroltfromlimitptheiolricies.switcDanglhing-
onestoppinghand,motodel.solveThtheus,theproblemmodeldirectlyneeds,Ianeeddirectequityvsolutionaluewithoutfunctionsantoyfindthprediction.eoptimalOn
switching-stoppingstrategies.Ontheotherhand,Icanfindtheequityvaluefunction
Theonlybyviscositpropyerbsolutionsoundaryargumenconditionstisapropresultierngapproacfromhthewhichoptimalconsidersstrategiesthetwofotheoptimiza-bank.
tionproblems(maximizingtheobjectivefunctionandfindingtheoptimalboundaries)
assimtheultaneouslyviscosit.ysolutionsTherefore,IargumenstatetstheofswitcPhamhing(200model5b).(bHisetweenargumenthettsworiskymathematicallyregimes)
fittomymodelundertheconstraintthatthebankonlyhasaswitchingproblem.
2.3.1TheSwitchingModel
IverifyswitchingstrategiesusingtheframeworkofPham(2005b)inthissection.In
ordertoexcludetheclosureproblem,supposethereisenoughsupportforthebankin
distress.Whenthereiswelfarecostofclosure,governmentsconsiderbailoutpolicies.In
16
CHAPTER2.ASWITCHINGMODELINBANKING
here,wecanassumethegovernmentrecapitalizesthebankbypublicfundsandthebank
operatesforeverwithcash-flowsaboveXSC>0.12Havingonlyaswitchingproblem,
thismodelsatisfiesassumptionsH1-H4ofPham(2005b)suchthat,
•H1.Lipschitzconditionholdsforthelineardriftandvarianceofstatevariablex.
•H2.Variancesarepositiveundereachregime.
•H3.Theout-flowfunction,x−r,isLipschitzcontinuous.
•H4.Theswitchingcostispositive,andstickingtothecurrentregimeiscostless.
MyvaluefunctionistheequityvaluedenotedbyΨi(x)forregimei.Definethediffer-
entialoperatorΔiF(x)foranyvaluefunctionF(x)underregimeias
2ΔiF(x)=µixF(x)+σ2ix2F(x).(2.21)
Theorem1.3.1ofPham(2005b)provestheexistenceoftheviscositysolution13toan
ordinarydifferentialequation.Istateitforthismodelinthenextproposition.
Proposition2.3Assumingconstantdriftandriskofthestatevariablexandthelinear
profitfunctionP(x)=x−r,foreachregimei,thevaluefunctionΨiisacontinuous
viscositysolutionon(XSC,∞)tothevariationalinequality:
min{rΨi(x)−ΔiΨi(x)−P(x),Ψi(x)−(Ψj=i(x)−k)}=0,x>XSC.(2.22)
Thismeansthatforbothregimes,wehavesupersolutionandsubsolutionproperties:
•Viscositysupersolutionproperty:foranyx¯>XSCandF∈C2(XSC,∞)s.t.x¯is
alocalminimumofΨi−F,Ψi(x¯)=F(x¯),wehave
min{rF(x¯)−ΔiF(x¯)−P(x¯),Ψi(x¯)−(Ψj=i(x¯)−k)}≥0,(2.23)
•Viscositysubsolutionproperty:foranyx¯>XSCandF∈C2(XSC,∞)s.t.x¯isa
localmaximumofΨi−F,Ψi(x¯)=F(x¯),wehave
min{rF(x¯)−ΔiF(x¯)−P(x¯),Ψi(x¯)−(Ψj=i(x¯)−k)}≤0.(2.24)
Basedon(2.22)thereexistsacontinuationareaforeachregime.Wheneverthecash-flow
isintheinterioroftheoperationarea,thebankstickstothecurrentregime.Thenthe
equityvalueisasolutiontoanODEdeterminedbythefirsttermin(2.22)beingequal
1213WSeeecanPhamlater(2005b),callXSCApptheendixclosurefortheprthreshold.oofofageneralcase.
2.3.SWITCHINGSTRATEGIESINACROSSINGCASE
17
zero.Thecontinuationareaisconnectedtotheswitchingregionwhereitisoptimalto
changetheregime.Switchingareaisaclosedsetbydefinition:assoonasthecash-flow
reachestheboundariesoftheoperationareaandfallsintheswitchingregion,thesecond
termin(2.22)willbeequaltozero.Thisequalityisthevaluematchingconditionnet
theswitchingcost.Moreover,Lemma1.4.1ofPham(2005b)addsthesmoothnessofthe
valuefunctionsintheircontinuationregion.Havingthevaluefunctionsfromthelast
proposition,Ineedtheoptimalboundaryconditionstofindtheswitching/continuation
regions.Theoptimalityconditionresultingfromtheorem1.4.1ofPham(2005b)isthe
socalledsmooth-fitproperty14overtheboundariesoftheswitchingregions.Notethat
thereisnoexplicitsolutioninPham(2005b).Idenotetheswitchingpointfromregime
GoodtoregimeBad,SGandtheswitchingpointfromBadtoGood,SB.Wedonot
knowyetiftheyexistuniquely.However,underassumptionsH1toH4proposition2.4
givesthesmooth-fitpropertyconditionsforanyswitchingpoint.
Proposition2.4Fori∈{G,B},thevaluefunctionΨiiscontinuouslydifferentiable
on(XSC,∞).Moreover,atSGandSBwehave
Ψ´G(SG)=Ψ´B(SG),(2.25)
Ψ´G(SB)=Ψ´B(SB).(2.26)
Idividethewholerangeofthecash-flowforregimei,(XSC,∞),toSWiandCi,asthe
switchingregionforregimeianditscontinuationregion,respectively.Thetwosubsets
intersectinSi.Inthisworkviscositysolutionargumentscannotdirectlyprovethatthe
continuationregionandtheswitchingregionofaregimei∈{G,B}onlyconnectas
cases(a)and(b)offigure2.4.Therefore,thecase(c)isalsopossiblesinceitsatisfiesall
resultsofPham(2005b),althoughitmightnotintuitivelybereasonableforthismodel.
2.3.2TheOptimalStopping-SwitchingModel
InordertofindtheoverallstrategiesofabankIneedtoadditsoptimalclosurede-
cisiontotheswitchingproblem,sinceintheabsenceofoutsiderinterventiondifferent
actionsactionsofandthevicebankversa.areInotcindeharacterizependent.theTheoptimalclosureswitcdecisionhingstrategiesinfluencesoftheeachswitcregimehing
includingtheclosuredecisioninthissection.Themathematicalsolutionofthecom-
15mobineddeltakingstopping-switcintoaccounhingtmothedeliseconomicafarbeylinondthistuitionswinork.thissectioConsequenn.Thetly,Ifirstdevintelopuitivthee
conjectureisthatlemma4.1ofVathandPham(2007)holdsforthestopping-switching
14Orthesmooth-pastingcondition.
15VathandPham(2007)findexplicitsolutionsforaspecialsettingofswitchingmodelwhichis
differentfromthismodel.
18
CHAPTER2.ASWITCHINGMODELINBANKING
modelsimilartothestoppingmodel.16
Conjecture1.Thevaluefunction,optimalequityΨˆi,i∈{G,B},issmoothC2
oncontinuationregionCiandsatisfies
rΨˆi(x)−ΔiΨˆi(x)−P(x)=0.
Lemma2.1Theclosurethresholdisabovezero,i.e.∃XSC>0,Ψˆi(XSC)=0for
i∈{G,B}whichistheoptimalregimeforthelowcash-flows.
ProofIfthebankneverclosesabovezerozerocash-flowandoperatesunderregimei
arbitrarilycloseto0,then0∈Ci.Fromconjecture1,Ψˆihasageneralform
xΨi(x)=r−µi−1+Ki1xγi1+Ki2xγi2.
Whenxconvergesto0,thefirstandthirdtermsconvergetozeroaswell.Thenif
Ki2=0theforthtermconvergestoinfinity.AndforKi2=0,Ψˆiconvergesto-1.By
contradiction,0∈CiandclosurethresholdXSCisabovezero.
Conjecture2.Forallx,Ψˆiismonotonicallyincreasinginx,i∈{G,B}.
Proposition2.5AsµG>µB,theswitchingregionofregimeBadisanon-emptyset.
ProofIngeneral,thebankcanswitchorclosedownwhenthecurrentregimeisno
mlongerustbhold:eneficial.whentheNomastatettervwhicariablehregimecash-floowrrisesstrategysufficienistlyoptimal,,eachthebclaimoundarycoasymptoticallyndition
convergestotheclaimonanunleveredbankwiththesamecash-flow.Itmeansthat
x→+∞,Ψˆi(x)asy−→mptoticallyx−1,i∈{G,B}.
µ−ritheeTherefore,quityvthealueofhigherthedriftbankofwiththeGhighoocdash-floregimew.triviallyAccordinglyincrea,thesesbtheettersoccialhoicvealueforhighand
cash-flowisregimeGood.OperatingundertheBadregimeabankwhichhassufficiently
highcash-flowreducestheriskandswitchestoregimeGood.Ofcoursewithahigher
costofswitchingtheswitchingpointfromBadtoGoodincreases.However,forany
0<k<∞thereexistsSB<∞suchthatΨˆB(x)=ΨˆG(x)−k(fromtheboundary
condition).ItindicatesthattheswitchingregionoftheBadregimeincludes(SB,∞),
i.e.SWB⊇(SB,∞)andSWB=.
16Inthissection,Istatesomeeconomicalconjectureswherethemathematicalproofismissing.
2.3.SWITCHINGSTRATEGIESINACROSSINGCASE
19
Lemma2.2TheoptimalclosurethresholdofthebankisxGorXSC≤xB.
ProofIfthebankfollowsoperatinginregimeGoodandneverswitchesithastoclose
optimallyatxG.WherexB<xG,havingtheswitchingopportunitythebankisable
tocontinueoperationwiththelowercash-flowsunderregimeBad.Sincetheswitching
actionisoptimalonlyifitincreasestheequityvalue,forallxintheoperationareawe
havelowerboundsEi(x)≤Ψˆi(x),i∈{G,B}.Thus,thezeroofΨˆoccursbelowthezero
ofEi,i∈{G,B}oratanequallevelofthecash-flow.Itmeansthatfortheswitching
case,ifthebankswitchestoregimeBadorstayswiththisregimeforthelowcash-flow
itstopsoperationatasmallerthresholdthantheno-substitutioncase.Forthesame
reason,havingswitchingopportunitythebankmaydecidestooperateunderregime
Goodifitcancloseatalowercash-flow.Concludingfrombothswitchingcases,forthe
closurethresholdofthestopping-switchingmodel,XSC,wehaveXSC≤xB<xG.
Lemma2.3Theswitchingregions,SWGandSWBdonotintersect.
ProofIfSWGandSWBintersect,theswitchisnotstable.Becauseifineachswitchthe
banklosesanamountofcash-flowandenterstotheswitchingareaofanotherregime,
ithastoswitchback.Thisisnotanoptimalpolicyasthebanklosesthecash-flow
continuouslyforthecostofswitchingbackandforth.Thus,onlythetwocontinuation
regions,CGandCBcanintersect.
Remark2.2SupposethereexisttwoswitchingpointsforregimeBad,mBandMB
wheremB<MBandcontinuationareaCB=(mB,MB).Definetheswitchingregion
oftheGoodregimeasanintervalSWG=(mG,MG).Fromlemma2.3wemusthave
thatSWG⊆CB,showninfigure2.5.Then,ifthecash-flowdecreasesfromahighvalue
M>MBtoalowerlevelm<mBweseethattwotimesswitchingismorecostlythan
operatingalongMtomonlyunderregimeGood.Withmultipleswitchesthebank
facesmultiplecostsofswitching
ΨˆG(m)<ΨˆG(mG)=ΨˆB(mG)−k
<ΨˆB(MB)−k=ΨˆG(MB)−2k
<ΨˆG(M)−2k.
WithoutswitchalongMtom,theequityvaluedecreasessmoothly.Anyothercase
oftwoormoreswitchingpointsforeachregimedecreasestheequityvaluewiththe
sameintuitionasthecaseinfigure2.5,unlessalowerclosurethresholdcanbeachieved.
Albeit,ifthebankcouldcloseatalowerlevelofcash-flowunderregimeGood,there
wouldbenoincentivetoswitchtotheBadregimeinthemeantime.Astheincentive
forchoosingregimeBadisalowerclosure,wecanexcludeallmultipleswitchingswhich
20
CHAPTER2.ASWITCHINGMODELINBANKING
aretoocostly.Doingso,thereisatmostoneswitchingpointforeachregimeandthe
switchingregionsareconvexsets.Thatmeanstheoptimalcontinuationareaofeach
regimeisaconvexsettooasshowninparts(a)and(b)offigure2.4.
Proposition2.6AssumeoptimalSGandSBexistuniquely.Thenswitchingpointsare
differentandSG<SB.
ProofThehigherdriftoftheGoodregimeincreasesthesocialvalueandtheequityvalue
ofthebankwhenthecash-flowrisessufficientlysuchthattheseclaimsasymptotically
convergetotheclaimsonanunleveredbankwiththesamecash-flow.Hence,above
somecertainlevelofthecash-flow,abankoperatingunderregimeGoodstickstoit.
IfthebankwasoperatingunderregimeBadwouldswitchtoregimeGoodabovethis
level.Thus,thethresholdlevelisanupperboundaryoftheoperationareaoftheBad
regime.Undertheassumptionofuniquenessofswitchingpoints,CBisaconvexsetwith
lowerboundaryXSC.ItfollowsthattheupperboundaryisSBandCB=(XSC,SB).
Further,thecontinuationareaoftheGoodregimeisconvexsinceSGisunique.Having
monotonicallyincreasingequityvalues,SG>XSCsincebydefinitionΨˆB(XSC)=0and
ΨˆB(XSC)=0while
ΨˆB(SG)=ΨˆG(SG)+k>0(k>0).
Fromlemma2.3,theoperationareaofregimeGoodisasupersetofSWB=[SB,∞).
Therefore,thebankshouldsticktooperationunderregimeGoodaboveSGandCG=
(SG,∞),whereSG≤SB.
IfswitchingfromGoodtoBadandfromBadtoGoodoccuratthesamevalueof
cash-flow,i.e.SG=SB=S,thenwehave
From(2.27),wehave
ΨG(S)=ΨB(S)−k,ΨB(S)=ΨG(S)−k,
Ψ´G(S)=Ψ´B(S).
ΨG(S)=ΨB(S)−k
=ΨG(S)−k−k
=ΨG(S)−2k.
(2.27)(2.28)
whichholdsonlyifk=0.Bycontradictiontok>0,thefirstassumptionisnotsatisfied,
i.e.SG=SB.
Accordingly,abankwithregimeGoodgamblesforresurrectionwhenindistressand
increasestheriskloosingtheexpectedreturn.Thenhigherriskwillhelptoclosethe
bankWheninthealowercash-flolevweloffallsbcash-floeloww.SG,Figurethe2.7bankshoopwseratingtheinoptimaltheGoostrategiesdregimeoftheswitcbank.hes
2.4.QUANTIFICATIONOFTHEOPTIMALSTRATEGIES
21
totheBadregime.HavingtheBadregime,whenthecash-flowdropsbellowXSC,the
bankwillclose.Butifthecash-flowincreasesandraisesaboveSB,thebankswitches
fromBadtoGoodinordertobenefitfromlargerreturn.
3.Conjecturea)Anincreaseink>0decreasesvaluefunctionsΨˆi,i∈{G,B}.
b)Whenswitchingiscostlessk=0,theequityΨioreachesmaximumvalue,i.e.∀x,Ψio(x)>
Ψˆi(x),i∈{G,B}.
Theintuitionisthattheequityvaluesareamericanoptionlikeclaims.Thehigher
thestrikeprice,thelowertheoptionvalue.Thatmeanstheequityvaluedecreaseswhen
switchingcostincreases.Therefore,whenk=0theequityvaluesaremaximal.
Remark2.3Whenswitchingcostishighthebankdoesnotswitchunlessinexcessive
need.Therefore,Iexpectthehigherk,thebankswitchesatalowerleveltoBadregime,
i.eatalowerSG.Similarlyfortheotherwayofswitching,abankwithregimeBad
postponesswitchingtoalargervalueofcash-flow.Itmeansthatthehigherk,thelarger
SB.Interval(SG,SB)expandsbyincreasingkwhileequityvaluesdecrease.However,
SGispreventedfrombeingarbitrarilysmallsinceSG>XSC>0.Hence,thereexistsk∗
suchthatanyk>k∗rulesoutswitchingfromGoodtoBad.Thebankerstopsoperation
underregimeGoodinsteadofexpensiveswitch.ThenwehaveSWB=(SB,+∞)and
SWG=.ThisgivesthatCB=(XSC,SB)andCG=(xG,+∞)asfigure2.6shows.
Remark2.4Inthelimitwhenk=0,itfollowsthatSG=SB=S.Havingthecostless
switchingopportunity,theargumentofremark2isnolongervalid.Atanylevelof
cash-flow,thebankcaninstantlyswitchwithoutanycosttoincreasetheequityvalue
distress.esurvivor
2.4QuantificationoftheOptimalStrategies
Applyingasystemofoptimalityconditions,ImodeltheequityvalueoftheBadregime
forthecash-flowboundedinaninterval[XSC,SB]andtheequityvaluefortheGood
regimeintheinterval[SG,+∞).AsthesolutionofthesecondorderODEfrom(2.22),
wehavethegeneralclosedformsoftheequityvaluefunctions:
ΨG(x)=x−1+K1xγG1+K2xγG2,(2.29)
µ−rGΨB(x)=r−xµB−1+K3xγB1+K4xγB2.(2.30)
22
CHAPTER2.ASWITCHINGMODELINBANKING
Addtheboundaryconditionsforallbarriers:
ΨG(SG)=ΨB(SG)−k,(2.31)
ΨB(SB)=ΨG(SB)−k,(2.32)
x→+∞⇒ΨG(x)asy−mptotical→ly.x−1,(2.33)
µ−rGΨB(XSC)=0.(2.34)
ThenK1=0from(2.33),andIfindtherestofcoefficientsversusSG,SBandXSCfrom
thesystemofequationsbelow:
rX−SµCB−1+K3XSγCB1+K4XSγCB2=0
r−SµGG−1+K2SGγG2=r−SµGB−1+K3SGγB1+K4SGγB2−k(2.35)
rS−BµB−1+K3SBγB1+K4SBγB2=r−SµBG−1+K2SBγG2−k
Sincethecoefficientsarecomplicatedfunctionsofbarriers,Ipresentthemindetailin
theappendix.Giventhecoefficientsintheclosedformsoftheequityvaluefunctions,I
usetheoptimalityconditions(2.25),(2.26)andthesmooth-fitpropertybellowinorder
todetermineSG,SBandXSC,
Ψ´B(XSC)=0.(2.36)
Thefollowingsystemofnon-linearequationsdeterminesallbarrierssimultaneously:
11+K2γG2SGγG2−1=+K3γB1SGγB1−1+K4γB2SGγB2−1(2.37)
r−µGr−µB
1+K3γB1SBγB1−1+K4γB2SBγB2−1=1+K2γG2SBγG2−1(2.38)
r−µBr−µG
1+K3γB1XγSBC1−1+K4γB2XSγCB2−1=0(2.39)
µ−rB
SubstitutingforK2,K3andK4in(2.37)-(2.39),Ihaveasetofthreenonlinearequations
tosolveforthethreeunknownvariables.Sincetheequationsalsocontaincrossmultipli-
cationsoftheunknownvariables,ananalyticalsolutionisnotpossible.17Suchmodels
canonlybesolvednumerically.However,thenextpropositionconfirmstheexpected
result.
17forxThe<r,closedmakeitformimpoftheossibleequittoyvapplyaluethepointsapproacouththatbyVXSathC>and0.PhamThisprop(2007)ertytoandgetneexplicitgativeout-flosolution.w
2.4.QUANTIFICATIONOFTHEOPTIMALSTRATEGIES23
Proposition2.7Insystemofequations(2.37)-(2.39)thereexistXSC,SGandSBsuch
that:(1)XSC>0,
(2)SG=0andSG=XSC,
(3)SB<∞.
endix.appSeeofPro2.4.1TwoAlternativeCases
Beforefindingnumericalevidencesforthegeneralstopping-switchingmodel,Iexplain
twocasesinwhichthegeneralmodelnolongerfits.Remarks2.3and2.4discusstwo
specialcasesfortheswitchingcostk.Equations(2.37)-(2.39)cannotgivesolutionsfor
k>k∗orwherek=0.Therefore,inthissubsectionIadjusttheframeworkofthe
modelforeachofthetwoboundarycases.18
hingSwitcCostless2.4.1.1Fork=0thatSG=SB=S,theclosedformsoftheequityvaluefunctionsarethe
sameas(2.29)-(2.30).Buttheboundaryconditionsneedtochange,aswehaveonly
threeboundaryconditionsforfourunknownKj’s,
ΨˆG(S)=ΨˆB(S),(2.40)
x→+∞⇒ΨˆG(x)asy−mptotical→ly.x−1,(2.41)
µ−rGΨˆB(xSC)=0.(2.42)
From(2.41),againK1=0in(2.29).Sinceonly(2.40)and(2.42)arenotenoughfor
determiningK2,K3andK4,Ihavetoaddsmooth-pastingcondition(2.28).
Givencoefficients,theoptimalitycondition(2.35)determinestheclosurethreshold.
However,anotheroptimalityconditionisnecessaryinordertofindtheswitchingpoint.
Toachieveanoptimalclosureandswitchingstrategytogether,Iusethefollowingopti-
malitycondition:19ˆˆ
∂∂ΨSG−∂∂XΨG|x=XSC∂∂XSSC=0,(2.43)
CSwhere∂X∂(ΨˆB(XSC))
∂SSC=∂(ΨˆB∂(SXSC)).(2.44)
X∂CS18Iexcludetherigorousdetailsofcalculationasnonlinearsystemsofequationsdonotgiveanyexplicit
solution.19(1998)LelandSee
24CHAPTER2.ASWITCHINGMODELINBANKING
Sincethesmoothfitpropertyissatisfiedattheswitchingpoint,optimizingequityvalue
fortheGoodregimeyieldsoptimalityoftheequityvalueundertheBadregime.Con-
dition(2.43)takesintoaccountthetotaldifferentialofthevaluefunctionandcondition
(2.44)considerstheoptimalityofclosurewithrespecttotheswitchingstrategy.The
systemofnon-linearequations(2.28)and(2.43),substitutingfor(2.44),indicatesthe
ts.oinpcritical2.4.1.2TooCostlySwitching
Supposek>k∗andthebankintheBadregimeneverswitches.Theassociatedequity
valuefunctionisgivenby(2.13)and(2.14),
xxxGΨˆG(x)=EG(x)=r−µG−1+(1−r−µG)(xG)γG2(2.45)
xG=γG2γ(r−−µ1G).(2.46)
2GTheclosedformofΨˆBis(2.30)withcoefficientsindicatedby(2.32)and(2.34).Then
wehaveoptimalityconditions(2.26)and(2.35).
ExamplesNumerical2.5Thissectionpresentsthreeexamplesoftheswitchingmodelcombinedwithclosurefor
thegeneralandspecialcases.First,weshouldlookatthecrossingbehavioroftwo
equityvaluefunctions,assumingnoswitch.TheparametersinrealvaluesareinTable
1.arametersP1.ableTParameterrσGσBµGµB
Value0.10.080.20.030.02
Table2showstheclosurepointsunderthetwodifferentregimeswithincentivesfor
switchingsinceclosuressatisfyxG>xB.Figure2.8sketchestheequityfunctions.Then
Ibuildthepropersystemofequationsforthegeneralcaseandalternativessubstituting
forparameters.NotethatnonlinearequationsbasicallyhavemultiplesolutionsandI
havetochoosethefeasiblesolution.
Table2.ACrossingCase
γG1γG2γB1γB2xGxBEB(xG)
2.79714-11.17212.23607-2.236070.06424920.05527860.023886
EXAMPLESNUMERICAL2.5.
25
2.5.1GeneralCase:TwoSwitches
SBSince.HothewevBader,fromregime(2.22)alwaaysswitcnecessaryhestoandGoosufficiend,SBtc<+ondition∞andfortheswitchigherhingkfromtheGolargerod
toBadis0<k≤ˆΨB(SG)−ΨˆG(SG)suchthatSGitselfisdependentonk.Thesolution
intable3showsthatSG>xGdoesnotnecessarilyholdsinceswitchingopportunity
increasestheequityvalues,ΨˆG>EGandΨˆB>EB.Evenk>EB(xG)givestwo
ts.oinphingswitc
Table3.CombinedSwitchingandClosure
k10−150.010.020.050.10.15
XSC0.0523540.0527550.0527460.0531880.0537150.054141
SG0.1034700.0837860.0780510.0685650.0601240.054774
SB0.1034710.1161890.1204770.1330160.1582410.190163
Theinterval(SG,SB)expandsbyincreasingk.Whentheswitchingcostislarge,the
bankwaitstillitisnecessarytochangetheregimeofoperation.Hence,itswitchesto
theBadregimeatamorestressfullevel.Withk=0.15theswitchingpointSGisvery
bcloseeingtolessthethanclosureXSCwhicthreshold.hisMyinfeasible.tryfor20kThelargerbankthanoporeratingequaltounder0.156BadendedregimeupalsoSG
theswitccasehesoftokGo=o0.d02.whenitApplyingcanlocowvveraluestheofcostkIandfindthistwoswitcincreaseshingSBp.ointsFigureconv2.9ergeshosucwsh
thatfork=10−15theyareextremelyclose.
hSwitcCostlessA2.5.2Whenk=0,costlessswitcheshappenatthesamelevelofcash-flow,SG=SB=S.The
bankinregimeBadswitchestoGoodifthecash-flowrisesS,whilethebankoperating
underregimeGoodswitchestoBadassoonasthecash-flowfallsbellowS.Then,ifthe
cash-flowdecreasesfurtherandreachesXSCthebankwithBadregimestopsoperating.
Underaboveparameters,asfigure2.10showsthetwocriticalpointsareS=0.1034702
andXSC=0.0523536.Onecouldexpectthesevaluesfromthegeneralcaseabove.The
closurethresholdobtainsthesmallestvalue,comparingtotable3.Theswitchingpoint
Sisinsideintervals[SG,SB]kforallk>0.
20Unfortunately,theanalysiscannotexplainthisboundaryfork.
26
CHAPTER2.ASWITCHINGMODELINBANKING
2.5.3TooCostlySwitch
Table4givesriskreductionresultsofourexampleunderhighswitchingcosts.
Table4.TooCostlySwitchingandClosure
k0.160.20.51100
XSC0.05420280.05440570.05496850.05514540.0552782
SB0.1973260.2282210.5108231.01398101.305
Figure2.11sketchescasek=0.16.AskgrowstheBadregimeisstillbeneficialsince
XSC<xG.Weseeintable4thatthehighertheswitchingcostthelargertheclosure
thresholdandswitchingpoint.Thecriticalpointsarealsolargerthanthegeneral
casewithtwoswitches.ByincreasingthecostswitchingfromGoodtoBadbecomes
unprofitable.However,riskreductionisstillvaluablebutatalargerlevelofcash-flow.
Conclusion2.6
Thispaperdevelopsacontinuoustimemodeltoverifybanks’risk-takingbehavior.Two
regimesofoperationareavailabletoarepresentativebankateachmomentoftime.The
differenceisinbothreturnandrisklevelsoftheportfoliochosenundereachregime.It
isassumedthatthebankisalreadyoperatinginthemarket.Thequestionishowthe
operationshouldcontinuefurtherintime.Investigatingthegamblingforresurrection
rationaleshowsthatwhenthecash-flowdecreasesbelowacertainlevelthebanktakes
morerisk(regimeBad).Ifthecash-flowraisesabovealargerthresholdthebankswitches
tothelessriskyregimewhichgeneratesahigherexpectedreturn(regimeGood).The
cash-flowthresholdsarenamedswitchingpoints.Optimalswitchingstrategiesforregime
GoodandBadarepresented.Insolvencyisdefinedasifthecash-flowfallsbelowthe
depositpaymentateachmoment.Thedepositsarefullyinsured.Intheseverecase
ofinsolvencythatthebank’sequityvalueszero,thebankgoesbankruptandstops
eration.opThisresearchextendstheliteratureonrisk-takingbehaviorinthesensethatitincludes
thechangeinthereturninadditiontotheriskchanges.Hence,advantagesofaregime
createsincentivesforthebanktostickonitorswitchtoanotherregime.Inthisregard,
thepaperpromotestheswitchingmodelofDanglandLehar(2004)whoonlystudythe
riskyassetsubstitutionproblem.Inmymodel,theswitchingsbehaviorisaresultofthe
tradeoffbetweenthereturnandrisk.Optimallythereexistsatmostoneswitchingpoint
foreachregime.However,theswitchingcostaffectsoptimalstrategiesofswitchingand
2.6.ONCLUSIONC27
closureincaseofbankruptcy.Ahighswitchingcostrulesoutrisktakingbylowering
switchingcriteriaandincreasingclosurethreshold.Itinfluencesriskreductionincentives
bypushingtheswitchingpointupward.Costlessswitchingendsupinoneswitching
point,abovewhichthebankoperatesunderGoodregime.Belowthiscriteria,thebank
operatesunderregimeBad,unlessthecash-flowdropsattheclosurethreshold.
Thestopping-switchingproblemwhichoptimizesthebank’sswitchingandclosurestrate-
giesdoesnothaveaclosedformsolution.Theextremecaseswheretheswitchingcost
istoohighortheswitchingiscostlesscannotbesolvedastheboundarycasesofthe
generalsetup.Thus,IcombinetheswitchingmodelofPham(2005b),thebasicstop-
pingmodel,andeconomicalintuitionsinordertooptimizestrategiesofabankforeach
case.Foundingaverificationtheoremforeachcaseisassevereasinventingastochastic
controlmodelwhichcouldsolvethegeneralswitching-stoppingproblem.Thisshould
bedoneasfurtherstochasticcontrolstudies.
Theentranceproblem,i.e.underwhichregimeabankstartsoperationatt=0is
leftforfurtherresearch.Theinitialregimedependsontheinitialcapital.Havingthe
relationshipbetweenthecash-flowandthecapital,theresultsofswitching-stopping
modelcanexplainthisproblemonlypartially:weneedatleastpositivecapitalwhich
requiresx0>XSC.Ifx0∈SWi,i∈{G,B}thebankoptimallystartsunderregimej.
Incaseofbankruptcy,the“lenderoflastresort”(LOLR)hastobearalldeposits.Thus,
thehighriskofinsolvencyisnotinfavorofthesupervisoryagencywhohastoplayasthe
LOLR.Thisresearchexcludesoutsiders’intervention.Yet,thesetupcanbeextended
toincludetheregulator’sroleasthesocialplannerwhomaximizesthetotalsurplusof
eration.opbankthe
28endixApp
CHAPTER2.ASWITCHINGMODELINBANKING
ProofofProposition2.1.WheretheequityvalueinregimeGoodisalwayshigher
thaninregimeBad,itistrivialthattheclosurethresholdislower.Fortheotherway,
ifxG<xB,whileµG>µB,thenforthefirstderivativesE´(.)wehave
∀x>xB>xG,
xx11GxE´G(x)−xE´B(x)=x(−)−γG2(−1)()γG2
r−µGr−µBr−µGxG
xBxγB2
+γB2(r−µB−1)(xB)
>xB(1−1)−γG2(xG−1)(x)γG2
r−µGr−µBr−µGxB
+γB2(xB−1)(x)γB2
r−µBxB
xxBG>((r−µG−r−µB)
xGxBxγB2
−γG2(r−µG−1)+γB2(r−µB−1))(xB)
xG=((r−µG)(1−γG2)+γG2−
0(xB)(1−γB2)+γB2)(x)γB2
r−µBxB
0.0=Therefore,E´G(x)>E´B(x),∀x>xB;andsinceEG(xB)>EB(xB)=0,forallpossible
cashflowsxwehaveEG(x)>EB(x).
ProofofProposition2.2.IfµG=µB=µ,thendµ=0in(2.19).Itfollows
from(2.17)thatxG>xB.Therefore,∀x>xG,
EG(x)−EB(x)=(1−π−xG)(x)γG2−(1−π−xB)(x)γB2
rr−µxGrr−µxB
<(1−π−xB)((x)γG2−(x)γB2)
rr−µxGxB
<(1−π−xB)((x)γG2−(x)γG2)
rr−µxGxB
<(1−π−xB)((x)γG2−(x)γG2)
rr−µxGxG
.0=
APPENDIX2.6.
Solutionstosystemofequations(2.35):
K2=(r2(SBγB2SGγB1−SBγB1SGγB2−k(SBγB2+SGγB2)XSγCB1+kSγBB1XSγCB2+
kSGγB1XSγCB2)+SB(SGγB2XSγCB1−SGγB1XSγCB2)(µG−µB)+k(−SGγB2XSγCB1
+SGγB1XSγCB2)µGµB+SBγB2(SGγB1µG(XSC+µB)−XSγCB1(SG(µG−µB)
+kµGµB))+SBγB1(−SGγB2µG(XSC+µB)+XSγCB2(SG(µG−µB)+
kµGµB))+r(k(SγGB2XSγCB1−SGγB1XSγCB2)(µG+µB)+SBγB2(kXSγCB1
γγγ(µG+µB)−SGB1(XSC+µG+µB))+SBB1(−kXSCB2(µG+µB)
+SGγB2(XSC+µG+µB))))/((SBγB2SGγG2XSγCB1−SBγB1SGγG2XSγCB2+SBγG2
(−SGγB2XSγCB1+SGγB1XSγCB2))(r−µG)(r−µB))
K3=(XSγCB2(k(SBγG2+SGγG2)(r−µG)(r−µB)−(−SBγG2SG+SBSGγG2)
(µG−µB))+(SγB2SγG2−SγG2SγB2)(r−µG)(r−XSC−µB))
GBGB/((SγB2SγG2XγB1−SγB1SγG2XγB2+SγG2(−SγB2XγB1+
BGSCBGSCBGSC
SGγB1XSγCB2))(r−µG)(r−µB))
K4=(XSγCB1(−k(SBγG2+SγGG2)(r−µG)(r−µB)+(−SBγG2SG+SBSGγG2)
(µG−µB))−(SγB1SγG2−SγG2SγB1)(r−µG)(r−XSC−µB))/
GBGB((SγB2SγG2XγB1−SγB1SγG2XγB2+SγG2(−SγB2
BGSCBGSCBG
XSγCB1+SGγB1XSγCB2))(r−µG)(r−µB))
29
30
CHAPTER2.ASWITCHINGMODELINBANKING
ProofofProposition2.7.Proofbycontradictionforeachcase:
(1)ByreplacingcoefficientsK2,K3andK4in(2.39)andorderingpowersofXSCinthe
evhaIequation
(XSγCB1+1(r−µG)(1−γB1)(SBγG2SGγB2−SBγB2SGγG2)+
XSγCB1γB1(r−µG)(r−µB)(SBγG2SGγB2−SBγB2SGγG2)+
XSγCB1+γB2(γB1−γB2)(k(r−µG)(r−µB)(SGγG2+SBγG2)+(µG−µB)
(SBSGγG2−SGSBγG2))+XSγCB2+1(r−µG)(−1+γB2)(SBγG2SGγB1−SBγB1SGγG2)+
XSγCB2γB2(r−µG)(r−µB)(SBγB1SGγG2−SBγG2SGγB1))/
((XSγCB1+1(SBγB2SGγG2−SBγG2SGγB2)+
XγB2+1(SγG2SγB1−SγB1SγG2))(r−µG)(r−µB))=0(2.47)
SCBGBG
Simplifyingthisequationtermbytermwithrespecttothedenominator,weseethat
thelefthandsideoftheequationgivesthefollowinglimit
.−lim1−γB2γB2
XSC→0r−µXγB1−γB2+1
GBGBBXSC+(SγG2SγSBC1−SγB1SγG2)
(SBγB2SGγG2−SBγG2SGγB2)
WhenXSC→0,thefactthatthelimitmustgoto0givesγB2=0andγB2−1=0
tradict.conhwhic
APPENDIX2.6.
31
(2)Similartopart(1),Ireplacethecoefficientsin(2.38)andorderitversusthepowers
ofSG.21ThelimitofresultingequationwhenSG→0isequalzeroif
SBγB1(r−µG)(r−µB)
γB2=γB1or(XSC)=−k(r−µG)(r−µB)−XSC(r−µG)
and:r=µGorr=µBork=0orγB2=0orSB=∞orXSC=0
and:µG=µB.
Thesenecessaryconditionsareinconsistentandnotsatisfied.Therefore,SG=0.
AssumeSG=XSC=S,rewrite(2.38)and(2.39)replacingforthecoefficientsandS.
Wemusthaveequation(2.38)plusequation(2.47)equalszero.Thisgives:
S=(1−k)γG2(r−µG)
1−γ2GFirstofallwefindS<0fork>1.Next,k=1yieldsS=0whichisimpossible.
Then,fork<1thetwosmooth-pastingconditions(2.38)and(2.39)nolongerhold.
Thecontradictionrejectsthehypothesis.
(3)BySBconvergingto∞,theequation(2.37),substitutingforcoefficientsK2,K3and
K4,holdsifµG=µBorγB1=1.Sincethelattercannotbetrue,equalityofthedriftsis
thenecessarycondition.Underthiscondition,(2.47)indicatesthatXSCisexactlythe
closurethresholdinno-switchcasefortheBadregime.Followingthisresult,SGfrom
(2.38)isγB2
SG=xBkγG2(1−γB2)
γG2−γB2
SuchSGmaycauseSG<xB.Despitetheresultisconsistentwithproposition2.2,the
assumptionofunequaldriftsrejectsthehypothesisofSG→∞.
21Sincetheresultingequationismorerigorousthanhelpful,Idonotmentionithere.
32
Figures
CHAPTER2.ASWITCHINGMODELINFigure2.1:Theequityvaluevs.thecash-flow,whereµG=µB.
BANKIFigure2.2:Theequityvaluevsthecash-flowwhereµG>µBandxG<xB.
NG
FIGURES2.6.
Figure2.3:Valueofequityvsthecash-flowwhereµG>µBandxG>xB.
33
opFigureerates2.4:underExamplesregimeiofasconlongtinasuationx∈Ciandandswitcitwillhingswitcareashtoforaregimeregimej=ii∈as{soG,onB}as.xThe∈SWbanki.
Figure2.5:Anexampleofmorethanoneswitchingpointforeachregime.
34
2.6:Figure
2.7:Figure
OnlyoneCHAPTERhingswitcp2.t:oinASWITCHINGfromregimeBadMODELtoregimeINGoBANKIodOptimalswitchingdecisionsandtheoptimaloperationregions.
2.8:Figure
rivialTcases.NG
2.6.FIGURESFigure
2.9:
A
general
case
in
optimal
ing,hing-stoppswitc
k
=
02..0
35
36
CHAPTERFigure
Figure
2.11:
2.10:
oT
o
2.ACostless
costly
SWITCHINGhing.switc
hing,switc
k
=
MODEL16..0
INBANKING
3Chapter
SwitchingModelsforBanking:Is
GamblingforResurrectionValid?
ductiontroIn3.1
“Gamblingforresurrection”hasbeencoveredinthefinancialaswellaspoliticaleco-
nomicsliterature.Theconventionalwisdomisthatanagentunderdistressgambles
andtakeshigherriskinordertosurvive.Understandardassumptionthatabankcan
chooseoneoftwodifferentregimesofoperation,i.e.oneportfoliowithahigherreturn
andanotherportfoliowithahigherrisk,therelationshipbetweenabank’scapitaland
risklevelismonotonic.Thecontributionofthispaperistoshowthatthemonotonicity
doesnotalwaysholdtrue.
Inthefirstpart,thispaperexaminestheendogenouschoiceofrisk-returnregimeforrisk-
neutralbankerswhomaximizetheequityvalue.Thebank’swealthisnormalizedwith
respecttothedepositvalue,andthereishenceaonetoonerelationshipbetweenthe
netwealthandthecapital(equity).Withlimitedliabilityandfullyinsureddepositsthe
bankincreasesitsrisk,loosingpartoftheexpectedreturnoftheinvestment.However,
itcanthenoperateunderasaferregimewhenhavingenoughwealth.Inadiscrete
timestaticmodelthe“cutoffvalues”belowwhichabanktakesmoreriskarefoundin
termsofthenetwealth.Therisk-takingstrategyismainlyinfluencedbythecostof
efforttoreducetherisk.Ifthebankcouldoperatewithoutanextracosttomonitor
itscreditors,itwouldincreasetheriskonlybelowauniqueleveloftheinitialwealth.
However,ifthebankhastopayforhavingabetterchancetosucceedinitsoperation,
theoptimalrisk-takingstrategyisobtainedbymultiplecutoffvalues.Infact,abank
maygobankruptatfailurewithahigherleveloftheinitialwealthunderthelessrisky
portfoliobecauseoftheeffortcost.Thiscanleadtothemultiplecutoffvaluepolicy.
37
38
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
Thesecondpartofthispaperextendsthesetuptoadynamicmodeltoinvestigate
theintertemporalrisk-takingbehavior.Thetwoperiodsofthemodelareconnected
toeachotherthroughthedividendpolicy.Atthebeginningofeachperiodthebank
choosesarisk-returnregimeofoperationbymaximizingthenetpresentvalue(NPV).
Themainfindinginthispartisthatbesidegamblingforresurrectionabankmayreduce
itsriskbyswitchingfromtheriskyregimetothesaferregimeifthelowriskportfolio
issufficientlyadvantageous.Theoptimalrisk-returnchoicevariesdependingonthe
capitallevelandthedividendpayment.Theriskreductionorgamblingforresurrection
strategyisimpactedalsobytheinterestratewhichdeterminesthedepositpayment.
Duetotheassumptionthatfailurebringsbankruptcy,theuniquenessofacutoffvalue
isrobustwithrespecttotheeffortcost.
Risk-takingbehaviorhasbeenwidelydiscussedintheliterature,mostlyasabasefor
regulationstudies.Decampsetal.(2004)verifyBasel(II)regulatorypoliciesina
continuous-timemodelbutwithoutdynamicregimeswitching.Ifollowthemtospecify
effortcosttothesaferregime.Thediscrete-timemodelofmypaperwhichincludes
endogenousregimeswitchingcontributestothisavenueofstudies.Agoodreferenceof
switchingmodelsisthecontinuous-timemodelofDanglandLehar(2004).Theyassume
standardgamblingforresurrectionwithtwoswitchingpointswhichareidenticalinthe
absenceofswitchingcost.Nevertheless,acontinuoustimemodeldoesnotnecessarily
haveclosedformsolutions.Thisobstaclemakesitimpossibletoverifythebank’sen-
dogenousportfoliochoiceanalyticallyinageneralcontinuoustimemodel.Therefore,in
thischapterIstructurethebank’sprobleminadiscrete-timemodel.
ThemodelpresentedinthischapterisgeneralizedcomparingtoDanglandLehar(2004)
inthesensethatbothreturnandrisklevelofportfoliochangefromoneregimeto
another.Further,Idefinenodeficiencyassumptiononanyregimetotheextentthat
eventheriskierregimemayhavepositivenetpresentvalue(NPV).Thisisdifferent
fromtheassumptioninDecampsetal.(2004)whichgivesprioritytoliquidationrather
thanoperatingundertheriskierregime.Alsoincreditrationing,StiglitzandWeiss
(1981)assigntheriskierprojectsforbeinginefficient.Incontrary,inthispaperIdiscuss
advantagesanddisadvantagesofeachregime,freefromdeficiencyassumptions.
Thefocusofstudiesinsomeotherliteratureisontheriskofcreditorsorfirms.In
thatview,thebankhastotakeamonitoringpositiontoavoidriskycreditors.Stiglitz
andWeiss(1981)relatetherisk-takingbehaviorofcreditorstotheinterestrateand
analyzecreditrationing.Intheirpaper,asdemandandsupplyofloansarefunctionsof
theinterestrate,itplaystheroleofscreeningdeviceforthebank.Highinterestrates
attractriskierborrowersanddecreasethebank’sexpectedprofit.Thebankisreluctant
totakeriskandmonitorsitscreditorsthroughtheinterestrateatwhichtheyarewilling
toborrow.Inthelender-borrowerrelationship,BerlinandMester(1992)defineabank’s
roleinpreventingafirm’sgamblingforresurrection.Thebankmayreceiveanoisysignal
3.2.THEONE-PERIODMODELWITHDISCRETERETURN
39
indicatingthesuccess/failureofthefirminordertothenallow/restrictrenegotiationof
ts.enanvcoloanMyworkisintheclassofstudiesconcernedwithregulatingthebanks’risk-takingand
dealdirectlywiththeriskincentives.DiamondandDybvig(1983)studybankdeposit
contractsandrisk-takingincentivesofbank-managerswhichleadtospeculativebank-
runs.MailathandMester(1994)solvethebank-regulatorygameinatwoperiodmodel
inwhichthebankaccessestoonerisk-freeandoneriskyasset.Theyexplainregulatory
forbearanceandhowtheregulatoryagencycannotcommitexantetoatoughclosure
policy.Thebanktakeshigherriskandtheregulatorwantstoimposeclosurebeforethe
netpresentvalueofthebank’sassetsbecomenegative.However,fromasocialwelfare
perspective,itisalmostalwaysoptimaltoletanunder-capitalizedbankcontinueto
operate.Thisgeneratesbadincentivesforthebankersfromanexantepointofview
totakerisk.AcharyaandYorulmazer(2007)observeaherdingbehavioramongmany
bankstoincreasetheriskasaresultofthemanagers’moralhazard,andtheregulator’s
problemregardingclosurepolicy.CordellaandYeyati(2003)analyzethemoralhazard
problemwithinamulti-periodmodelbutassumeindependentrisk-takingstrategyin
eachperiod.Theexistingrisk-takingstudiescanbesummerizedaseitheranagent
choosesbetweenasafeassetandariskyinvestmentinaoneperiodmodelorifa
dynamicmodelisprsented,eachperiodisindependentandunaffectedbyotherperiods.
Thismotivatesmyworktochallengetheclassicalideaofgamblingforresurrection,
allowingfullyendogenousrisk-takingbehavior.
Thefollowingsectionsetsupaoneperiodmodeltodeterminetheswitchingcutoff
valuesandtheassociatedpolicies.Section3.3developsthesetuptoatwoperiodmodel.
Insection3.4theoptimaldividendpolicyisinvestigated.Section3.5presentssome
numericalexamplestoillustratetheresult.Section3.6concludes.Theappendixincludes
theproofofaremark.
3.2TheOne-PeriodModelwithDiscreteReturn
Assumeariskneutralworld.TheinitialstatusofthebankisW0whichconsistsofinitial
equity,A0≥0,anddepositprincipalnormalizedtoone,i.e.W0=A0+1.Deposits
arefullyinsuredandshareholdershavelimitedliability.Operationofthebankhasa
constantreturnstoscaletechnologywithrateofreturn(RR)ziunderregimei∈{0,1}.
Attheendofperiod,stochasticvariablezireturnsRiincaseofsuccesswhichoccurs
withprobabilityPiunderregimei.Incaseoffailure,therateorreturnofregimeiisri,
Ri>0withprobabilityPi,
zi=ri>−1withprobability1−Pi.(3.1)
40
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
FollowingStiglitzandWeiss(1981),assumethatregime1hashigherexpectedreturn
andmoreconcentrateddistributionthanregime0.Thismeansthatµ1>µ0where
µi=PiRi+(1−Pi)ributR1<R0andr0≤r1.ItmustbethenP1>P0.Further,
Iassumethatregime1bearsmonetaryeffortcoste≥0.Thecostcanbeinterpreted
asexpensesofmonitoringcreditors(delegatedmonitoringasinDiamond(1984)).By
definition,noneofthetworegimesisessentiallyinefficientorlesspreferable.Theequity
valueattimet=1is,
W1=max(0,(W0−ie)(1+zi)−C).(3.2)
Inordertocreateincentivesforthebanktomonitoritscreditors,theaddedvalueof
higheffortregimeshouldexceeditscost,i.e.forW0≥1,
W0(1+µ1)−W0>e(1+µ1)⇔e<1+µ1µ.(3.3)
1Theriskfreeinterestrateinthemarketis0<rf<1,whererf<Rifori∈{0,1}.
Generallythebankfacestwooptimizationproblems.Firstitmustdecideonhowmuch
capitaltoinvestinariskyregime,andseconditmustdecidewhichregimetotake.Due
totheriskneutralityassumption,thebankinvestseitherallthewealthornothing.We
canthustranslatethebank’sfirstproblemtoanentrancedecision.Thebankdecides
toenterthemarketandstartsoperationiftheexpectedprofitofinvestinginarisky
regime1ismorethantheexpectedvalueofsavingtheinitialcapital.Definediscountrate
β=1+rf,thebanktakeanyriskyregimeiif,
A0≤βE(W1,i).(3.4)
(3.4)
Forthebanktostartoperation,anecessaryconditionisthatthebankmustbesol-
ventiftheoperationsucceeds.Otherwise,thebankwouldneverchoosethatregimeof
operation.Thisrequiresforanyregimei,
CW0≥1+R+ie,i∈{0,1}.(3.5)
iSince1+CR0<1+CR1+e,thehigheffortregimemaycauseinsolvencywheretheloweffort
operationissolvent.
Yet,iftheNPVisnegativethebankhasincentivetooperateunderariskyregime
becauseofahigherreturn(comparingtotheriskfreeRR)incaseofsuccess.Therefore,
solvencyandprofitabilityofariskyregimeiisthenecessaryandsufficientconditionfor
thebanktotakedepositandstartoperationunderthatregime,
A0≤βPi((A0+1−ie)(1+Ri)−C).(3.6)
3.2.THEONE-PERIODMODELWITHDISCRETERETURN
41
TosolvetheinequalityforA0,thesignofβPi(1+Ri)−1isimportant.Thistermcanbe
interpretedastheNPVofsuccessreturnforinvestingoneunitinriskyregimei,although
theeffortcostofregime1mustbeconsideredtoo.Manypapers,e.g.MailathandMester
(1994),assumethatariskyregimehasnegativeNPV.Withtheirassumptiontheresult
isgamblingforresurrection:ifβPi(1+Ri)<1,thebankchoosesriskyinvestmenti
wherethecapitalisbelowathreshold,
A0≤βPi(C−(1−ie)(1+Ri)).(3.7)
βPi(1+Ri)−1
whichismeaningful(positive)iffitsnumeratorisnegative.Alternatively,supposesuc-
cessofanyriskyregimeisprofitable,
βPi(1+Ri)>1,i∈{0,1}.(3.8)
Contrarytotheclassicalidea,thebankoperatesunderariskyregimeiff,
A0≥βPi(C−(1−ie)(1+Ri)).(3.9)
βPi(1+Ri)−1
Theuniquecut-offvaluepolicyobtainsfortheentrancedecisionifthenumeratoris
positive.Otherwise,thebankstartsoperatingunderariskyregimeforanypositive
levelofinitialcapital.1When(3.9)holds,thebankentersthemarketandtakesdeposits.
Hence,fortheinitialwealthwehave,
W0≥Gi=βPi(C+ie(1+Ri)−1).(3.10)
βPi(1+Ri)−1
Nowfocusonthebank’ssecondproblem:optimizationofrisk-returnregime.Regime
iisriskyforsomelevelofinitialwealthifitsfailurebringsoutinsolvency,i.e.W0<
1+Cri+ie.Withoutlossofgeneralitysuppose1+Cr0<1+Cr1+e.Againthehigheffort
regimethoughsucceedswithahigherprobabilitycausesinsolvencyincaseoffailure
forinitialwealth1+Cr0<W0<1+Cr1+ewherethebankundertheloweffortregimeis
solvent.2Correspondingly,theregimechoiceisdifferentineachpossiblecase.Thebank
optimallychoosesregimei0atthebeginningoftheperiodtomaximizetheexpected
valueofitsequity,
E(W1,i0)≥E(W1,i),i0=i∈{0,1}.(3.11)
Thefollowingpropositiondescribesthebank’soptimalstrategy.
1CordellaandYeyati(2003)havesimilarresult,albeitwithrespecttorateofreturnsandinterest
rate.21+µ1>WithoutP0(1+theR0),butassumptiontheresultregardingdoesthenotchange.thresholds,proposition3.1hastoberepeatedforacase
42
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
Proposition3.1(I)SupposeforexpectedreturnsP1(1+R1)>P0(1+R0).
(a)IfP1(1+R1)>1+µ0,theregimechoiceischaracterizedbyauniquecutoff,i.e.for
eachsetofparametersthereexistsonlyonecutoffvalue,intermsofnetwealth,above
whichthebanktakeslessrisk.Figure3.1showspossiblecases.
(b)IfP1(1+R1)<1+µ0,multiplecutoffvaluescharacterizetheoptimalregimechoices
intwooutoffivefeasibleordersofthresholds,S1,S2,S3,1+Cr0and1+Cr1+e,asshown
byfigure3.2.Ineachmultiple-cutoffstrategythreecutoffvaluesintermsofnetwealth
existsuchthatthebank’sregimechoicediffersfromlowertohigherthaneach.Inother
cases,uniquecutoffvaluegivestheoptimalregimechoices.
(II)IfP0(1+R0)>P1(1+R1),thenuniquecutoffvaluepolicyisoptimal.
Proof(I.a)Asfailureofaregimemaycausebankruptcy,findinitialwealthlevels
anassoyciatedreturntoofeaceachhlikregime,elyitfailureisinsolvcase.entThreeonlyatcasesfailurearepofossible:regimethe1,itbankisisinsolvsolvenenttatfora
failure.Compareexpectedprofitsundertworegimechoices.
1.Supposethebankissolventforallreturns,i.e.W0≥1+Cr1+e.From(11)regime
1makesthebankbetteroffiff
(W0−e)(1+µ1)−C≥W0(1+µ0)−C.
Consequently,thebankchoosesregimei0=1iff
W0≥S1=e(1+µ1)/(µ1−µ0),
andi0=0otherwise.
(3.12)
2.When1+Cr0≤W0<1+Cr1+e,failureofregime1makesthebankinsolventbecause
ofeffortcostbutatreturnr0thebankisstillsolvent.Itchoosesregimei0=1iff
P1((W0−e)(1+R1)−C)≥W0(1+µ0)−C⇔
W0≥S2=(P1−1)C+eP1(1+R1)(3.13)
P1(1+R1)−1−µ0
3.Neitherr0,norr1yieldsolvency,i.e.W0<1+Cr0.Thebankprefersthehigheffort
iffregime
P1((W0−e)(1+R1)−C)≥P0(W0(1+R0)−C)⇔
C(P1−P0)+eP1(1+R1)
W0≥S3=P1−P0+P1R1−P0R0.(3.14)
3.2.THEONE-PERIODMODELWITHDISCRETERETURN43
Inspiteofhavingthreethresholds,noticethatS1>1+Cr1+econtradictsS2<1+Cr1+e
ersa,vviceandCS2<1+r1+e⇔
((P1−1)(1+r1)−[P1(1+R1)−1−µ0])C<
(P1(1+R1)−1−µ0)(1+r1)
e[(P1(1+R1)−1−µ0)−P1(1+R1)]
P1(1+R1)−1−µ0
Ce(1+µ0)
⇔1+r1>µ1−µ0.
Therefore,whereS1>1+Cr1+e,S2isnotfeasibleasS2>1+Cr1+e.Thenoptimalregime
is0forall1+Cr0<W0<1+Cr1+e.Yet,S2>1+Cr0contradictsS3<1+Cr0andviceversa.
C1+r0<S2⇔
C(P1(1+R1)−1−µ0−(P1−1)(1+r0))
<(P1(1+R1)−1−µ0)(1+r0)
eP1(1+R1)
P1(1+R1)−1−µ0
C(P1(1+R1)−P0(1+R0)−(P1−P0)(1+r0))
⇔<(1+r0)(P1(1+R1)−1−µ0)
eP1(1+R1)
P1(1+R1)−1−µ0
(3.15)
(3.16)
(3.17)
⇔C(P1(1+R1)−P0(1+R0)−(P1−P0)(1+r0))<
(1+r0)(P1(1+R1)−P0(1+R0))
eP1(1+R1)
P1(1+R1)−P0(1+R0)(3.17)
C⇔S3>1+r0,
Thus,theoptimalregimeis0forallW0≤1+Cr0.ItmeansthatS1istheuniquecutoff
value.Inasimilarway,weenduphavingS2orS3asauniquecutoffvalueiffoneof
themisfeasible,rulingoutfeasibilityoftwoothers.
44
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
grossFigure3.1:success-returnSwitchingofregimestrategy1einaxceedsoneexpperioecteddmoreturndelofwithregimediscrete0.return,expected
(I.b)UnderassumptionP1(1+R1)<1+µ0,theinequality(3.13)changes.Inother
words,nowregime1istheoptimalchoiceforW0≤S2,andregime0isoptimaloth-
erwise.Incontrasttopart(I.a),inequalities(3.16)and(3.17)reverse.HereS2>1+Cr0
requiresS3<1+Cr0,andS2<1+Cr1+edirectsto1+Cr1<S1.IfS1isfeasible,then
feasibilityofS2makesS3feasible,case(a)infigure3.2.However,S2mightbelower
than1+Cr0.Thenfor1+Cr0≤W0<1+Cr1+ewehavei0=0.ButitmeansthatS3isabove
Candtheoptimalregimeis0whereW<C.Case(b)showstheuniquecutoff
v1+ralu0eS1.WithfeasibleS3,feasibilityofS20rather1+r0thancase(a)canalsoleadtocase
(c)whereS1isabove1+Cr1andstillinfeasible.Hence,threecutoffvaluesareS3,S2and
1+Cr1+e.Incase(d),S1isCinfeasiblebut1+Cr1<SC1.ThisdemandsS2<1+Cr1+e,butwe
haveinfeasibilityofS2<1+r0<S3.Therefore,1+r1istheuniquecutoffvCalue.Thelast
possiblecaseis(e)infigure3.2.There,feasibleS3appearswithS2>1+r+ewhich
bringsoutS1infeasible.Hence,S3istheuniquecutoffvalue,asbelowS2b1etweentwo
boundaries1+Cr0and1+Cr1+etheoptimalstrategyisregime1.
(II)Inasimilarapproachas(I.a),weobservethebankisreluctanttoexerteffort.Since
S3<0,below1+Cr0theoptimalchoiceisregime0.Still,ifP1(1+R1)>1+µ0,then
S2>1+Cr0becauseS3<0<1+Cr0.Inthiscase,eitherS1orS2istheuniquecutoffvalue
(cases(a)and(b)infigure3.1).ButP1(1+R1)<1+µ0causesS2<1+Cr0.Therefore,
eitherS1isfeasibleandtheuniquecutoffvalueoritisonlyabove1+Cr1,making1+Cr1+e
theuniquecutoffvalue(cases(b)and(d)infigure3.2).
Remark3.1Inpart(I.b)ofproposition3.1,theexpectedreturnofthehigheffort
regimeequalsitsreturninthelikelycaseofsuccessandthatislowerthantheexpected
notreturntooofsmalltheriskyandthisregime.motivItoatesccursforwhentakingthehigherreturnriskofofregimeregime0in0.caseThus,ofiffailurefailureis
3.2.HTEONE-PERIODMODELWITHDISCRETERETURN45
Figure3.2:Switchingstrategyinaoneperiodmodelwithdiscretereturn,expected
returnofregime0surpassexpectedgrosssuccess-returnofregime1.
makesthebankinsolventunderregime1butsolventforregime0,asaboveS2,the
bankprefersregime0.However,effortcostissmallenoughsuchthatthebankexerts
efforttogainmorethroughhigherprobabilityofsuccess.Thiscanbeseeninthe
intervalbetweenfeasibleS2andS3.Insolvencyatfailureofeitherregime0or1makes
regime1moreinterestingsinceitsfailurehasalowerprobability.Underassumption
P1(1+R1)<P0(1+R0)inpart(II),inexpectationthebankismoreprofitableif
succeedsinregime0thaninregime1.Hence,itisreluctanttochoosethesaferregime.
Thisbringsoutauniquecutoffpolicy,withalargecutoffvaluecomparingtoallother
cases.
Remark3.2Inthebenchmarkcasewithouteffortcost,i.e.e=0,theoptimalregime
isi0=1becauseofitshigherexpectedreturn,aslongasW0≥1+Cr0.Notethatnowthe
orderchangesforboundaries1+Cr1<1+Cr0.Withinthesamemethodasproposition3.1,
cutoffvaluesarefoundbaseduponthesimilarassumptions.Nevertheless,theoptimal
regimechoiceisgivenbyauniquecutoffvalueforeachcase.Theproofisincludedin
endix.appthe
Comparingtheresultsofremark3.2andproposition3.1,weseethateffortcostplaysan
importantroleforthebank’schoiceoftheregimeofoperation.Theclassicalgambling
46
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
forresurrectionobtainsaslongasthereisnoeffortcost.Thisresultisforinstanceseen
inDanglandLehar(2004)ifchangingfromoneregimetoanother,i.e.regime-switch,
costsnothing.Whiletheswitchingcostyieldsseparatethresholdsfortheriskreduction
andgamblingforresurrection,theeffortcostforaportfoliowithhigherexpectedreturn
inducesnon-monotoneregimechoices.Decampsetal.(2004)consideraneffortcost
intheircontinuoustimemodel,buttheyassumenegativeNPVoftheriskierregime
whichmakesitworsethannooperation.Therefore,theyobtainastandardgambling
forresurrectioncutoffpolicy.Themodelinthispapershowsthateffortcostontheone
handandnodeficiency(nonegativeNPV)ofriskyregimesontheotherhandarethe
sourceofamultiplicityofcutoffvalues.
Remark3.3RobustnessCheckofProposition3.1forNon-monetaryEffortCost:Al-
ternatively,theremightbenon-monetaryeffortcostforregime1,whichdoesnotaffect
thereturnoftheportfoliobutinflictsanadditionalmonitoringcostonthebank.Con-
sequently,thebankhastopayeattheendoftheperiodandtheequityvalueis
(3.18)
W1=(1+zi0)W0−i0e−C.(3.18)
Thenthesolvencyvalueintermsofnetwealthis
W0≥i0e+C.(3.19)
z+1i0Assumethat1+Cr0<e1++rC1.Withthesamevalueofe,regimechoicecutoffvaluesturnout
tobesmallercomparedtotheoriginalmodelwithmonetarycost,sincetheeffortcostis
paidoutoncereturnsarerealized.Forhighlevelofnetwealthabovee1++rC1,betweentwo
boundariesandbelow1+Cr0,thebankbringseffortiffW0is,respectivelyineachinterval,
abovethefollowingcutoffvalues,
Sˆ1=µ1−eµ0,(3.20)
(P1−1)C+eP1
Sˆ2=P1(1+R1)−(1+µ0)(3.21)
C(P1−P0)+eP1
Sˆ3=P1(1+R1)−P0(1+R0).(3.22)
Nonetheless,proposition3.1includingsomemulti-cutoffstrategiesissatisfied.
Wecaninterpretregimestrategiesintheoneperiodmodelasashort-rundecisionin
adynamicmodel.However,theshort-rundecisioncanbedifferentfromthelong-run
thedecision.endofIfpateriodthebbutalsoeginningaofstreameachofperiofuturedtheprofitsbanktheoptimizesdecisionnotforonlyriskthetakingprofitmaofy
3.3.THETWO-PERIODMODELWITHDISCRETERETURN
Figure3.3:TheTime-lineoftwo-periodmodel
47
change.Theintuitionisthatthebankfacesanintertemporaldecisiononitsprofit.For
instance,theprofitofoneperiodoperationaddsonthebank’swealthwhichdetermines
theregimeofoperationforthenextperiod.Sincetheresultofoneperiodinfluences
nextperiods,thebankhastotakeintoaccounttheconsequencesofitstoday’sdecision
onthefuture.Tocapturetheintertemporaleffects,inthefollowingsectionIanalyze
theoptimalbehaviorofbanksinadynamicsetupoftwoperiods.
3.3TheTwo-PeriodModelwithDiscreteReturn
Supposetherearethreedates,t=0,1and2.Atthebeginningofperiodone,t=o,
thebankreceivesdepositsnormalizedto1thatithastopaybackinequalpayments
Catt=1,2.Havinginitialequity,theinitialwealthW0exceedsprincipal.3Atthe
endofthefirstperiodthebankhastopaydividendoutofpositiveprofit.Thedividend
isassumetobeanexogenouslygivenfractionofthefirstperiodoutcomelessdeposit
payment,(1−δ)(Y1−C)>0.Theremainingwealth,δ(Y1−C)>0,coverseffort
costandgeneratesoutcomeinthenextperiod.4Att=2residualprofits(afterdeposit
payment)arepaidtoshareholders.Therefore,thebankonbehalfoftheshareholders
aimstooptimizethedividendofthefirstperiodaddedtothefinalprofit.Thediscount
rateis0<β<1.Therateofreturn(RR)iszigivenbyequation(3.1).Figure3.3
sketchesthetimingofthemodel.
3Alternatively,depositscouldbedefinedasbeingrolledovereachperiod.Thiswouldhowevernot
results.theaffect4Notethat0<δ<1representthereinvestmentratio.Thisnotationmakesthefurthercalculations
simpler.
48
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
AgainIassumethatthereismonetaryeffortcosteforregime1.Thebankmayswitchat
t=1toadifferentregimeofoperationinthesecondperiod,i.e.i0=i1.Differentform
DanglandLehar(2004),Iabstractfromswitchingcostsinthepresentmodelinwhich
thelowriskinduceseffortcosts.Thesecondperiodoperationandregimechoiceare
knownfromtheoneperiodmodel.Thefirstperioddecisionsareaffectedbythesecond
period,asthebankhastoconsideritsnetpresentvalueoftwoperiodsoperation.The
beststrategyattimet=0isthesolutiontothefollowingoptimizationproblem:
maxi0E((1−δ)max(Y1−C,0)+βmax(Y2−C,0)),(3.23)
where
Y1=(1+zi0)(W0−i0e),
W1=max(0,δ(Y1−C)),
Y=(1+zi1)(W1−i1e)forW1>0,
2otherwise.0
(3.24)(3.25)(3.26)
Thewealthofthebankmustcoverthedepositpayment,dividendandthecostof
operationunderanappropriateregime.Aftertherealizationofthereturnattheendof
eachperiodthebankissolventifitsassociatedlevelofwealthislargerthanthedeposit
payment.However,att=1afterpayingfordepositanddividendthebankmaynot
haveenoughmoneyforcontinuationundereitherregime.Thenthebankclosesandpays
theremainingwealthtotheshareholders.Hence,whenmakingitsdecisionregarding
i0andi1thebankmustconsidercostsandsolvency.ThatmeansforsomerangeofW0
evensuccessinthefirstperiodisnotenoughtocontinueoperation.Forsuchvalues,the
modelreducestotheoneperiodmodelalreadydiscussedinthelastsection.Therefore,
asecondperiodwillonlyberelevantifY2−C>0.Indeed,firstitisrequiredY1−C>0
whichisverifiedinthelastsection.Thesufficientcondition
Y2−C>0⇔
(δ((1+zi0)(W0−i0e)−C)−i1e)(1+zi1)−C>0(3.27)
extendstoseveralcasesundereachsomeoutcomecannotbesolvent.Thereversecases,
whereY2<C,canbedescribedby
Czi1<δ((1+zi0)(W0−i0e)−C)−i1e−1.(3.28)
Thisdeterminestherelationbetweenthereturnsofthefirstperiodandthesecond
periodwhichdoesnotbringsolvencyforthebankattheendoftwoperiodsoperation.
3.3.THETWO-PERIODMODELWITHDISCRETERETURN
3.3.1NoRiskofInsolvency
49
Fornowfocusontheveryspecialcasewhereinitialwealthissufficientlyhighsuchthat
allreturnsofthefirstandthesecondperiodaresolvent.From(3.25)itmeansthatfor
allvaluesofzi0andzi1wherei0,i1∈{0,1},initialwealthshouldexceed
W0>T(zi0,zi1)=C(1+δ(1+zi1))+e(i1+i0δ(1+zi0)).(3.29)
δ(1+zi0)(1+zi1)δ(1+zi0)
Proposition3.2Ifinitialwealthofthebanksatisfies(3.29),theuniquecutoffvalue
policyholdsifS1>T(zi0,zi1).Otherwisethebankneverchoosesregime0.Therefore,
risk-returnchoiceofeachperiodisindependentofanotherperiod.
ProofTofindswitchingstrategies,themodelissolvedbybackwardinduction.The
wsolutionealth.totheConsequensecondtlyfropmeriod(3.12),isthethesamebankasoptheeratesonepundereriodmoregimedeli1with=1Wiff1Was1≥initialS1,
i.e.
W1≥e(1+µ1),(3.30)
µ−µ01andregime0otherwise.Tosolvethefirstperiodoptimizationproblem,assumethe
bankoperatesunderagivenregimei1inthesecondperiod.Plug(3.24)-(3.26)in(3.23).
SinceY2>C,theobjectivefunctionfollows
maxi0E[(1−δ)((1+zi0)(W0−i0e)−C)+
β((1+zi1)(δ((1+zi0)(W0−i0e)−C)−i1e)−C)]
whichis,usingequation(3.25),equivalentto
maxi0(1−δ)[(1+µi0)(W0−i0e)−C]
+β[(1+µi1)(δ((1+µi0)(W0−i0e)−C)−i1e)−C]
yieldsRearranging
maxi0(1+µi0)[1−δ+βδ(1+µi1)]W0
−((1+µi0)[1−δ+βδ(1+µi1)]i0+β(1+µi1)i1)e
−(1−δ+β+βδ(1+µi1))C.
.31)(3
(3.32)
Theoptimalregimechoiceoft=0maximizesthenetpresentvalueoftwoperiodsfor
anygivenregimeinthesecondperiod.Therefore,foreachi1thebankisbetteroffby
50
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
choosingi0=1iftheexpectedvalueoftwoperiodsunderi0=1isbetterthanorequal
totheexpectedvalueunderi0=0.Thisconditioncanbesimplifiedto
(1+µ0)[1−δ+βδ(1+µi1)]W0≤
(1+µ1)[1−δ+βδ(1+µi1)]W0−(1+µ1)[1−δ+βδ(1+µi1)]e,
esgivhwhic
W0≥e(1+µ1).(3.33)
µ−µ01ThethresholdisidenticaltoS1whichimpliesthatthefirstperioddecisionisindependent
ofthesecondperiod.
Hence,Icanconsidereachperiodinisolation.Thisisaresultoftheassumptionthat
thedividendratioisgivenexogenously.Sincethebankissolventforallreturns,the
futureoutcomedoesnotaffectthecurrentsituation.However,thefeasibilitycondition
requiresthethresholdtobegreaterthanT(zi0,zi1)fori0,i1∈{0,1}.Ifnot,thebank
choosesonlytheregimewithahigherexpectedreturn.
Inadditiontotheindependenceoftheregimechoicesinthetwoperiodsforthespecial
caseabove,thecutoffvalueisonlyaffectedbyaveragereturns.Noreturnmakesthe
bankinsolventandtheriskisirrelevant.Thevariancesandreturnintervalsthusdonot
appearintheregimechoicedecisionsforthissituation.Thebankchoosestheloweffort
regimeonlyifitcannotaffordtheeffortcostassociatedwiththehighmeanreturn.The
effectofvariancesinregimestrategiesareexaminedinthenextsubsectionthatinvolves
someriskofinsolvency.
3.3.2OperatingunderRiskofBankruptcy
Whentheoutcomeofthefirstperiodislowsuchthatthebankneedshigheroutcome
inthesecondperiod,condition(3.29)iscrucial.Forsomecases,failuremaycause
insolvency,butevensuccessreturnmaynotbesufficientforonemoreperiodoperation.
Thegeneralsettingisexploredinthenextsectionaspartofnumericalexample,since
equation(3.29)extendstotoomanyconditionswhichcannotbesolvedinageneral
case.Toobtainanalyticalsolutionsandgainintuition,Ihavetolimitthesettingtoa
simplebenchmark.Now,assumetheextremecaseinwhichthebanklosestotalwealth
andgoesbankruptifitfails.ItmeansthatRRzifrom(3.1)returnsri=−1,i=0,1
incaseoffailure.Thensimilartoproposition3.2,wecomparetheexpectedreturnsof
operationundertwoalternativeregimes.Thebankassertseffortiffthesuccessofregime
1ismoreprofitablethansuccessofregime0,
P1[(1+R1)(W1−e)−C]≥P0[(1+R0)W1−C].
3.3.THETWO-PERIODMODELWITHDISCRETERETURN
51
Thatgivestheuniquecutoffpointofthesecondperiod(henceintermsofW1),below
whichthebankchoosesriskierregime,
C(P1−P0)+eP1(1+R1)
W1≥S3=P1(1+R1)−P0(1+R0).(3.34)
Inthenextstep,Iapplybackwardinductiontosolveforthebank’sregimechoicesin
thefirstperiod.Proposition3.3describesswitchingandcutoffstrategiesundertherisk
ofbankruptcy,i.e.(3.29)doesnotholdor(3.27)isviolated.
Proposition3.3Whenri=−1,i=0,1,foranexogenousδ∈(0,1),theunique-cutoff
policyoptimizesrisk-returnregimeofthefirstperiod.Thereexistanonemptyswitching
area,intermsofnetwealth.
ProofThebankchoosesi0bymaximizingobjectivefunction(3.23)whichgives
maxi0E[(1−δ)max((1+zi0)(W0−i0e)−C,0)+
βmax((1+zi1)(δ((1+zi0)(W0−i0e)−C)−i1e)−C,0)](3.35)
Theoptimalchoiceisaffectedbyi1sincenotallreturnshavepositivevalueforthe
bank.Although,i1isknownbythethresholdin(3.34)att=1,thebankneedsto
realizeitatt=0.Theoperationcontinuesforthesecondperiodonlyaftersuccessat
thefirstperiod.Hence,substituteW1from(3.25)and(3.26)in(3.34),wehavei1=1
iffW0≥Qi0suchthat
Q=C(P1−P0+δ(P1(1+R1)−P0(1+R0)))+eP1(1+R1)+ie.(3.36)
i0δ(P1(1+R1)−P0(1+R0))(1+Ri0)0
SinceQ0<Q1,thebankatt=0findsitsoptimalchoiceofthefirstperiod,
(I)i1=1iffW0≥Q1where
Q=C(P1−P0+δ(P1(1+R1)−P0(1+R0)))+eP1(1+R1)+e,(3.37)
1δ(P1(1+R1)−P0(1+R0))(1+R1)
(II)i1=0iffW0<Q0where
Q0=C(P1−P0+δ(P1(1+R1)−P0(1+R0)))+eP1(1+R1),(3.38)
δ(P1(1+R1)−P0(1+R0))(1+R0)
(III)i1=i0iffQ0≤W0<Q1,i.e.[Q0,Q1]isanonemptysubsetofswitchingarea.
52
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
Now,Ianalyzethechoiceofthefirstperiodrisk-returnregime,i0,ineachofthethree
intervals.FirstassumeW0≥Q1,thenhigheffortregimeisoptimaliff
P1[(1−δ)((1+R1)(W0−e)−C)+βP1((1+R1)(δ((1+R1)
(W0−e)−C)−e)−C)]≥P0[(1−δ)((1+R0)W0−C)+
βP1((1+R1)(δ((1+R0)W0−C)−e)−C)].
ThresholdU1obtainssuchthati0=1iffW0≥U1,
U1=(C(P1−P0)(1−δ+δβP1(1+R1)+βP1)+
eP1(1+R1)(1−δ+δβP1(1+R1)+β(P1−P0)))/
((P1(1+R1)−P0(1+R0))(1−δ+δβP1(1+R1))).(3.39)
Next,ifQ0≤W0<Q1thebankswitchesfromtheregimeithasatt=0toanother
regimeatt=1.Thus,therearetwooptionsofregimecombination:(i0=1,i1=0)
and(i0=0,i1=1).Thebankisbetteroffbytheformerregimecombinationiff
P1[(1−δ)((1+R1)(W0−e)−C)+βP0((1+R0)δ
((1+R1)(W0−e)−C)−C)]≥P0[(1−δ)((1+R0)W0−C)+
βP1((1+R1)(δ((1+R0)W0−C)−e)−C)].
ThisgivesthresholdU2forW0,belowwhichthebankassertsnoeffortandtakeshigher
risk,U2=(C((P1−P0)(1−δ)+δβP1P0(R0−R1))+eP1(1+R1)(1−δ
−βP0+δβP0(1+R0)))/((P1(1+R1)−P0(1+R0))(1−δ)).(3.40)
ForlowinitialwealthW0<Q0,thebankchoosesi0=1att=0,thoughitundertakes
higherriskinthesecondperiod,iff
P1[(1−δ)((1+R1)(W0−e)−C)+βP0((1+R0)(δ((1+R1)
(W0−e)−C))−C)]≥P0[(1−δ)((1+R0)W0−C)+βP0
((1+R0)(δ((1+R0)W0−C))−C)].
ThisdemandsW0≥U3withthreshold
U3=(C(P1−P0)(1−δ+δβP0(1+R0)+βP0)+
eP1(1+R1)(1−δ+δβP0(1+R0)))/
((P1(1+R1)−P0(1+R0))(1−δ+δβP0(1+R0))).(3.41)
3.3.THETWO-PERIODMODELWITHDISCRETERETURN53
Nevertheless,onlyfeasiblethresholdsarecutoffvaluesthatrequiresthemtosatisfy
U3≤Q0,Q0≤U2<Q1andQ1≤U1.NotethatQ0=Q1,andallthethresholds
cannotbeequal.Q0andQ1arebothcontinuous,decreasingandconvexinδ,
dQ1−(C(P1−P0)+eP1(1+R1))
dδ=δ2(P1(1+R1)−P0(1+R0))(1+R1)<0,(3.42)
dQ0−(C(P1−P0)+eP1(1+R1))
dδ=δ2(P1(1+R1)−P0(1+R0))(1+R0)<0,(3.43)
22ddδQ21>0,ddδQ20>0.(3.44)
HavingequaldenominatorsinU1andU3,highprobabilityofsuccessandexpectedreturn
inregime1bringsU1>U3.Moreover,thesetwomonotonethresholdshavemonotone
firstderivativeswithrespecttoδ.AlsoU2isincreasingandconvexinδ,
U1−U3=(Cβ[(P1−P0)(1−δ)+δβP0P1(R1−R0)]+
eP1(1+R1)(P1−P0))/((P1(1+R1)−P0(1+R0))
(1−δ+δβP0(1+R0))(1−δ+δβP1(1+R1)))>0,(3.45)
dU1=βP1(P1−P0)(C+e(1+R1))(1−βP1(1+R1)),(3.46)
dδ(P1(1+R1)−P0(1+R0))(1−δ+βP1(1+R1))2
dU2=βCP0P1(R0−R1)+βeP0P1R0(1+R1)(3.47)
dδ(1−δ)2(P1(1+R1)−P0(1+R0))
dU3βP0(P1−P0)C(1−βP0(1+R0))
dδ=(P1(1+R1)−P0(1+R0))(1−δ+βP0(1+R0))2,(3.48)
d2U2>0(3.49)
2dδHence,asfunctionsofδ,eachofU1,U2andU3intersectQ0andQ1onlyonce.
IverifythattheintersectionofU1andQ1,denotedbyδ1,isidenticaltotheintersection
ofU2andQ1.Itisarootoftheequation
C[δP0(R0−R1)(1−δ+δβP1(1+R1))−(1−δ)(P1−P0)]=e(1+R1)
[(1−δ)(P1−δP0+P0(1+R0))+δβP0P1(1+R1)(1−δ(1+R0))].(3.50)
ThisisequivalenttoU2=Q1,aswell.WhenU1>Q1,theLHSinequation(3.50)
islargerthanitsRHS.ThisimpliesU2>Q1,andviceversa.Thus,feasibilityofU1
demandsinfeasibilityofU2andtheotherwayaround.
54
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
Similarly,IfindthatU2=Q0occursatδ0whichisthesolutiontothefollowingequation,
C[δP0(R0−R1)(1−δ+δβP0(1+R0))−(1−δ)(P1−P0)]=
eP1(1+R1)(δ(1+R0)−1)(1−δ+δβP0(1+R0)).(3.51)
ThisequationimposesU3=Q0aswell.IftheLHSislargerthantheRHSinthis
equationthenU3<Q0whichgivesQ0>U2.Conversely,feasibilityofU2makesU3
infeasible.Comparethetwoequations,coefficientsofδin(3.50)arelargerthanthose
in(3.51).Therefore,δ1>δ0,whichcompletesthesufficientconditionsforfeasibilityof
onlyoneofthethresholdspergivenδ.Itfollowsthatgivenδ,onlyoneofthresholds
Uj,j=1,2,3istheuniquecutoffvalue.
Remark3.4Themodelwithnon-monetarycostisanalogoustothiscase.
ExamplesNumerical3.4
Inordertoillustratetheresults,Ipresentthreebenchmarksetsofparametersforthe
t3.3.wo-pNeerioxt,dImoinvdel.estigateThetfirstwomoreexampleisgeneralinlinecaseswithinthewhichsettingthebankpresentedcaninbepropsolventositionat
regime.aoffailure
ailureFatBankruptcy3.4.1Figure3.4showsregimechoicesandswitchingstrategiesfordifferentinitialwealthlevels
andinvestmentpolicywithouteffortcoste,asitdoesnotinfluencethegeneralityofthe
result.Inthiscasewehaver0=r1=−1.
Whentheeffortcostisequalto0thebanktakesregime1foralowerlevelofinitialwealth
sincetheexpectedreturnishigherateachlevelofwealth.Inaddition,lowerdividend
ratio,i.e.higherδ,createsmoreincentivetoundertakerisk.Tosummarize,thereare
twotrade-offs.Theintertemporaloneisassociatedtothedividendandreinvestment
decision.Thoughthereinvestmentratioisexogenous,thebankneedstodecideabout
postponingeitherhigherriskorhigherreturn.Anothertrade-offisbetweenhigher
probabilityofsuccessorhighersuccessreturn.Theoptimalcombinationofregime
choicesfortwoperiodsisaresultoftwotrade-offs.
Whenthedividendratioislow,failuredoesnotbringalargelosstothebankwhose
wealthisalsosmall.Sincetheprofitofsuccessislow,thebankbehavesindifferent
betweenfailureandthelowdividend.Thus,itgamblesforresurrectionfirst.Ifthe
banksucceedsithassufficientwealthandplayssafeinthesecondperiod.Inthisarea
weobserveriskreductionfromperiodonetotwo.
EXAMPLESNUMERICAL3.4.
55
Figure3.4:Inter-temporalSwitchingstrategiesinatwo-periodmodelwithouteffort
cost,i.e.e=0,showingfourpossibleregime-combinationsintheoptimalregionw.r.t
initialwealthW0andreinvestmentratioδ
ForthewealthlevelbetweenQ0andQ1,thebankcanaffordtheeffortcostandtakes
thesaferregimeforhighdividend.Inthatcase,ithastoplayriskyinthesecondperiod
becausereinvestmentislowsuchthatthebankdoesnothavesufficientwealthtostart
thesecondperiodunderthesaferregime.Thisareaisincludedforthegamblingfor
resurrectionstrategyfromthefirstperiodtothesecond.
Inaddition,notethattheswitchingareaisactuallyasuper-setof[Q0,Q1],depending
onδ.Giventhedividendratio,ifU2isfeasible(δ0<δ<δ1),bothtwo-wayswitching
strategiesaretakeninthisrangeofwealth.
3.4.2SolvencyatFailure
Supposeri>−1,i∈{0,1}.Thethresholdsofproposition3.1givepossiblecutoff
pointsforthesecondperiod.Considerthefollowingexamples:
Example1.Takeparameterset:
R1r1P1R0r0P0βδe
0.75−0.10.650.9−0.30.450.90.990.3
(3.52)
56
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
Sincethedepositisfullyinsured,thepaymentequalsC=β+1β2.Notethat(3.8)isnot
trueforregime0butissatisfiedunderregime1.Therefore,thebankmaytakeregime0
forW0≤G0=3.31.Butregime1isworthierthannooperationforallpositivewealth
becauseG1=−14.7693.Checkingtheassumptionsofproposition3.1andSjs,wefind
case(b)offigure3.2withuniquecutoffvalueS1=2.05forthesecondperiod.Inorder
tohaveW1>S1thebankneedsforeachregimeanditsoutcomeofthefirstperiod,zi0,
/δS+C1W0>Q(zi0)=1+zi0+i0e.(3.53)
WeseethatQ(R0)<Q(R1)<Q(r1)<Q(r0).Next,Iverifywhethereachcombination
ofoutcomesoftwoperiodsissolvent.ItmeansthatIcompute16thresholdsfrom(3.29)
foralloutcomesoftwoperiods.LocatethemonintervalsmadebyQ(zi0)sfortheinitial
wealth.Findoptimalregimeineachintervalboundedtothedescribedthresholdsby
comparingexpectedprofitsofsolventoutcomes.Attheendtheuniquecutoffpointis
2.24,whereQ(R1)<2.24<Q(r1).Forall1<W0<2.24thebankoperatesunder
riskierregimewhileifitwasoperatingforonlyoneperioditwouldtakesaferregime
alreadyaboveS1<2.24.Inotherwords,havingtheopportunitytooperateforone
moreperiodthebanktakesthesaferregimeatalargercapitalcomparingtothecaseof
oneperiodoperation.
parametersAssume2.ExampleR1r1P1R0r0P0βδe
0.650.10.650.7500.30.570.990.2(3.54)
Now,foroneperiodoperation(e.g.secondperiod)wehavecase(a)offigure3.2with
threeconsistentcutoffpointsS3=1.106,S2=1.158andS1=1.253.Consequently,
therearefourthresholdsQ(zi0),i0∈{r0,r1,R0,R1}foreachcase.Alsotakeintoaccount
16thresholdsfromequation(3.29).Thenumericalsolutiondeterminestheuniquecutoff
policyasmanythresholdsareinfeasible.Thecutoffvalueis1.76belowwhichthebank
choosesregimei0=0.
Ariskyinvestmentisworthyinregime0(basedon(3.10))forW0≤G0=1.154,and
inregime1ifW0≤G1=1.193where(3.8)doesnotholdtrue.Onlytwothresholds
T(R0,R0)=1.007andT(R0,R1)=1.145arebelowGis.Still,GisarebellowallQ(zi0)s.
Hence,thebankoperatesundertheriskyregimeinthesecondperiod.Thebankcan
survivetwoperiodsonlyifitchoosestheriskyregimeatt=0andsucceeds.Thus,
operatingforonlyoneperiodunderregime1producesahigherexpectedprofitthan
operatingunderregime0inthefirstperiodandhopingtosucceedandcontinuefor
thesecondperiod.SinceinthisexampleS2<G1<G0<S1,thebankdecidesabout
regimesbasedonSjsandoperatesforonlyoneperiodbelowGis.Toconclude,thebank
operatesforoneperiodunderregime0whereS2≤W0<G0.Butittakesthesafer
REINVESTMENTGENOUSENDO3.5.
regimeforS3≤W0<S2andtheriskierregimebelowS3.
57
Comparisonofthetwoexamplesshowsthatwhentheriskfreeinterestrateishigh(dis-
countfactorβissmall)thedepositpaymentislarge.Therefore,inoperation,thebank
losescapital.Asfaraspossible,itoperatesoneperiodandtakesrisknon-monotonically
intermsofthecapitallevel.Otherwise,ifthedepositpaymentislowitcanbesolvent
atfailureandhaslesstendencytowardsrisk.Then,itcanoperatefortwoperiodsand
followstheuniquecutoffpolicyatthefirstperiod.
3.5EndogenousReinvestment
Tocompletetheoptimizationproblemofthebank,Iincludeitsdividendpolicyandfind
optimalδ.Thisdecisionismadeatt=1simultaneouswiththeregimechoicedecision.
Thebankmustbesolventbythenandthefirstperiodoutcomeisrealizedsuchthat
Y1>C.Theobjectivefunctionisstill(3.31).Forsimplicity,weassumer0=r1=−1.
Foreveryi1,theoptimalδobtainsfrom
maxδ(1−δ)(Y1−C)+βP(zi1)((1+zi1)(δ(Y1−C)−i1e)−C).(3.55)
Rearrangeitforδ∗,
δ∗=argmaxδ(βP(zi1)(1+zi1)−1)(Y1−C)+(Y1−C)
−Iδ>0[βP(zi1)(i1e(1+zi1)+C)].(3.56)
Sincethisequationisalinearfunctionofδ,thereinvestmentratiodependsonthesign
ofitscoefficientin(3.50).Noticethatthisisthesameproblemasthebankhasatt=0
whenitdecidestoenterthegame.Thebankreinvestsallofitscapitalinariskyregime
iff(3.8)holdstrue,βPi(1+Ri)−1>0.Therefore,ifabank∗operatedforoneperiod,
fromsection3.2,thesolventbankwouldpaynodividendandδ=1.
Ifthebankreinvest,itscapitalatt=1isW1=Y1−C.Inordertohaveaprofitable
investmentinregimei,theNPVshouldbepositive,
W1≥βPi(ie(1+Ri)+C).(3.57)
βPi(1+Ri)−1
Therefore,foroperatingunderregime1thebankneeds
CPβW1≥G0=βP0(1+0R0)−1,(3.58)
(3.58)
58
CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
andforoperatingunderregime0itshouldbethat,
W1≥G1=βP1(e(1+R1)+C).(3.59)
βP1(1+R1)−1
Stillthebankchoosesbetweenregime0and1att=1basedoncutoffpolicy.Feasibility
ofcutoffvalueS1requiresS1>G0andS1>G1.Bothconditionsaresatisfiedwhere
C(P1−P0−βP0P1(R0−R1))>eP1(1+R1).(3.60)
βP0(1+R0)−1
Knowingallaboutthesecondperiod,thebankfindsitsfirstperiodinvestmentstrategies
bybackwardinduction.
Endogenouslyoptimizationofthereinvestmentreducestoabang-bangpolicyofreinvest-
ingallornothing,asagentsareriskneutral.Whenthebankreinvestsalltheoutcome
ofthefirstperiod,theproblemissimilartotheregimechoiceoptimizationinthetwo
periodmodel.Theoptimalstrategycanagainbecharacterizedbyuniquecutoffpolicy
asassumptionsofproposition3.3hold.Thismakestheendogenousreinvestmentmodel
anotherrobustnesschecktothefindingsintheprevioussections.
Conclusion3.6
Thisworkquestionsgamblingforresurrectionandverifiesexistenceofanon-monotonic
relationshipbetweenthecapitallevelofabankanditsportfoliorisk.Thestandard
rationaleofbankstakingriskunderdistressisviolatedinastaticmodelwhichcompares
twodifferentregimesofoperation.Thisisbeyondplentyofstudieswhichfocusonly
onselectingriskyorrisk-freeasset,e.gMailathandMester(1994).Indeed,thecost
ofefforttoreducetheriskfromoneriskyregimetothelessriskyoneplaysthemain
roletoruleoutstandardcutoffpolicy.Theriskislessinoneportfoliosincethebank
exertsefforttomonitorcreditors.Theriskierprojectshoweverproducealargerreturn
ifsucceedwhiletheprobabilityoffailureandassociatedlossesarelarger.Iobserve
twotypesofrisk-returnstrategies.Thefirsttypeisinlinewiththestandardrationale:
theriskneutralbankerchoosestheriskierassetwhenthecapitaldecreases,inorder
tobenefitfromahigherreturnincaseofsuccessandhopetosurvivethedistress.
However,inthesecondtype,therisk-takingdecisiondependsontheinitiallevelat
whichthecapitalbeginstodecay.First,whenthecapitaldecreasesfromahighlevel,
abankwithlessriskfacesbankruptcyincaseoffailure,becausethemonitoringeffort
ispaidsoutofthecapital.Therefore,thebankstopsmonitoringandtheriskincreases.
Riskymortgagesareexamplesofsuchbehaviorinbanks.Furtherthecapitaldecreases,
thebankoperatingunderariskyregimealsogoesbankruptincaseoffailure.Thus,the
bankchangesitsportfoliototheonewithlessriskoffailure.Nevertheless,withvery
3.6.ONCLUSIONC59
lowcapitalatwhichneithermonitoringnorriskyprojectscansurviveincaseoffailure,
thebankgoesonoperatingunderriskyregime.
Inthedynamicmodel,contrarytoDanglandLehar(2004),therisk-takingandtheinter-
temporalswitchingstrategiesareendogenous(notforcedbyaregulator)andinfluence
eachother.Undertheirhypothesisofgamblingforresurrection,thecutoffvalueofthe
risk-takingpolicyisidenticaltotheswitchingpoint,whentheswitchingcostisomitted.
Therefore,noswitchmeansthebankchoosesacertainfixedregime.Inthispaper,if
aswitchingareaexistitincludescutoffvalues.Theswitchingareaofeachregimeisa
continuoussetwithatmostonepointofintersectionwiththeswitchingareaoftheother
regime.Dependingonthedividendratio,eachswitchingareamaynarroworwidenand
onemaydisappear.Whenbothexisttheyintersectonauniquecutoffvalue.Low
dividendraisesgamblingforresurrectionbuthighdividendcausesthebanktoreduce
riskinthefirstperiod.Yettheimpactisreversedafterpayingdividendoutsincethereis
nooutsideinvestorandthebankispoor.Monitoringcostincreasesrisk-takingincentive
gentlybutdoesnothaveastructuraleffect.
Thefindingsregardingnon-monotonicrisk-takingpoliciescontributetothebanking
regulationliterature.Banksfinancetheirinvestmentsinlargepartsbydeposits.Imper-
fecttransferabilityofbanks’assetsmakebanks’liquidationcostly.Tomakeprofitthe
bankneedstospendonmonitoringthecreditors.Yet,withlimitedliabilityandinsuf-
ficientcapitalthebankshirksinordertoincreasetheequityvalue.Fromaregulatory
pointofview,theclosurepolicywithasufficientlyhighcapitalratiorequirementwould
eliminatetherisk-takingincentives.However,astrictregulatoryclosurepolicyisnot
sociallyoptimal.Theregulatorshouldnotonlyprotectthedepositorsbutalsooptimize
thesocialvalueofthebank.Thisway,thesupervisoryagencyendsupinlargescale
forbearanceincaseofacrisis.Instead,myresultsproposemoreaccuratescreeningof
risksinthebanks,inthefirstplace.Thepossiblemethodscouldbethemoremarket
basedapproaches,forinstancepartialprivateinsuranceandrisk-basedtaxing.
60CHAPTER3.ISGAMBLINGFORRESURRECTIONVALID?
endixApp
Proofofremark3.2:Suppose1+µ1>P0(1+R0).If1+Cr1≤W0<1+Cr0,thebank
takesregime1abovethresholdS10definedbelow,
P1((1+R1)W0−C)+(1+P1)((1+r1)W0−C)≥
P0((1+R0)W0−C)(3.61)
0C(1−P0)
W0≥S1=1+µ1−P0(1+R0).(3.62)
TheLHSandRHSof(3.61)aretheexpectedreturnsunderregime1and0,respectively.
IfW0<1+Cr1theLHSofinequality(3.61)reducestoonlyP1((1+R1)W0−C).Assuming
P1(1+R1)−P0(1+R0)>0,theoptimalregimeis0belowathreshold,
C(P1−P0)
S20=P1(1+R1)−P0(1+R0).(3.63)
Tocheckthefeasibilityofthethreshold,comparethemtoboundariesWeseethat
S10<1+Cr0followsfromassumptionµ0<µ1.Yetforanotherboundarywehave
CS10>1+r1⇔µ1−µ0<(r1−r0)(1−P0),(3.64)
equalshwhic
CS20≥1+r1,ifP1(1+R1)>P0(1+R0)(3.65)
CS20<1+r1,ifP1(1+R1)<P0(1+R0).(3.66)
In(3.66)however,S20<0.Itmeansthati0=0forW0<1+Cr1andS10isfeasibleand
theuniquecutoffvalue.ButwhenP1(1+R1)>P0(1+R0),eitherS20orS10isfeasible.
Accordingly,weendupinunique-cutoffpolicy.
Ifconditions1+µ1<P0(1+R0)isviolated,thenS01<0andinfeasible.Thesame
holdsforS20ifP1(1+R1)<P0(1+R0).Itfollowsthattheonlycutoffvalueis1+Cr1.
Yet,forP1(1+R1)>P0(1C+R0),seethatS201+Cr1.Hencethebanktakesregime0
belowuniquecutoffvalue1+r1.
Chapter4
andTheSystemicTheoriesFofailuresBankRegulation
4.1ductiontroIn
Thispapersurveystherecentliteratureonbankregulation,inparticularforregulating
systemicrisk.Traditionally,therehasbeenmicro-prudentialbankingregulationfocusing
onindividualbanksandtherisktheyhold.Asanexample,thesurveyofBhattacharya
etal.(1998)coverstheliteratureintheeconomicsofbankregulationpriortoBaselII.
Subsequently,untilaround,thefocusoftheliteraturewasontheoptimalcombination
andimplementationoftheBaselIIaccords.The2007-2009financialcrisis,however,has
highlightedtheinterdependenciesinthebankingsectorandinthefinancialindustryas
awhole.Asaconsequence,systemicriskissueshavebeeninthefocusoftherecent
theoriesonbankingregulationandstudiesconcentratedonmacro-prudentialregulation
strategies.Theselatestexperiencesprovidethemotivationtoreviewhowthebankingregulation
theorieshavebeenprogressing.Hence,thecontributionofthissurveyistoconnectthe
previousbankregulationliteraturethathasfocusedonasingleentitywiththemost
recentideasontakingsystemicriskintoaccount.Thefocusistoshowhowthelatter
iscomplementarytotheformerandinwhichdirectionsbothstrainsoftheacademic
progress.shoulddiscussionsFirstinabasicsetup,Idiscussbankfailures.Thefundamentalproblemsthatpoten-
tiallyleadtobankdefaultintheexpenseofdepositorsareaddressed.Thesearethe
shareholders’risk-takingandmanagerialmoralhazard.Toprotectdepositorsthesuper-
visoryauthorityhastoregulatebanksonbehalfofdepositors.However,theauthority
facestime-inconsistencyprobleminsolvingthis.Theregulatorwhowantsex-anteto
reducetherisk-takingincentivesbythreateningtoliquidateassetsincaseofdefault,
61
62
CHAPTER4.THETHEORIESFOBANKTIONREGULAmighthavetoforegotheliquidationex-postbecauseofthehighsocialcost.Solutions
tothistime-inconsistencyproblemarepresentedinthefirstpartofthisarticle.Hereby,
Imostlyconcentrateonthelateststudiesinwhichrisk-basedapproaches,e.g.BaselII,
considered.areThesecondpartofthearticleexploresthetopicsofregulatingsystemicrisk.Widespread
bank-failures,namedsystemicfailure,bringexternalitiesintothefinancialsystem.The
externalitiesconsistofbank-runscontagionandmassivebank-failuressuchthatnopri-
vateinstituteisabletocompensateforthelosses.Inordertopreventthis,governments
havetotakethesystemicrisksintoaccountforregulation.Inbanks,systemicrisk
mayoriginatefromeithertheliabilityortheassetsideofthebalance-sheet.Bank-runs
areexamplesofexogenousshockswhichappearintheliabilityside.Moralhazardand
riskyinvestmentsgenerateriskintheassetside.Inthispaper,thecomponentsofboth
idiosyncratic(exogenous)shocksonbanksandthecontributionofbanks(endogenous
shocks)tosystemiccrisesarestudied.Toovercomethetime-inconsistencyproblemin
eachofthesecases,ex-anteoptimalmacro-prudentialregulationpoliciesarerequired.
Myarticlecoversthistopicfollowingtheliteraturewhichspecificallyreferstotheexpe-
rienceoftherecentcrisis,itsoriginsandconsequences.Forthisreason,afterpresenting
thesystemicriskregulatoryproposals;e.g.grantinghealthybanks,systemicrisksen-
sitivecapitaladequacyandtaxing,Ireviewthestatisticsabouttheresolutionpolicies
appliedinthepastcrisisevents.
Inordertoshowhowthissurveyrelatestotheexistingliterature,Ifirstgiveanoverview
ofprevioussurveystudies.Inanintegratedmodel,Bhattacharyaetal.(1998)analyze
differentdepositinsurancerelatedmoralhazardsandregulatorypolicies.Reasonsfor
theexistenceofbanksarediscussedontheassetsideaswellastheliabilitysideofthe
balancesheet.Ononehand,theyexplainthedelegatedmonitoringideaofDiamond
(1984)thatbanksmonitorthecreditorsonbehalfofdepositorsatalowercostthannon-
intermediatedbilateralcontractingbetweeninvestorsandentrepreneurs.Ontheother
hand,theargumentofDiamondandDybvig(1983)ispresentedthattheintermediaries
contributetoimproverisksharingandprovideliquiditybetterthannon-intermediated
casewhereinvestorswouldhavetowaitforthepayoffsfromthelongterminvestments.
BasedonDiamondandDybvig(1983),thegovernments’depositinsurancecanprevent
panicbank-runs.However,theinsuredbankshaveincentivesformoralhazardinthe
sensetokeeplowerliquidreserveandtoseekriskierportfolios.Theregulatorypolicies
areneededtoattacktheserisk-takingactivities.
In1988,theBaselIaccordintroducedthecapitalrequirementstoruleoutincentives
forrisktaking.However,studiessuchasGennotteandPyle(1991)andBootand
Greenbaum(1993)showparticularsituationsinwhichstringentcapitalconstraintsdo
notreducetheriskinbankingsector.BesankoandKanatas(1996)emphasizethat
whentheinsideandoutsideequitiesareextremelydistinguishablethehighercapital
4.1.ODUCTIONINTR63
requirementcanreducethebank’sincentivetomonitortheborrowersandincreaserisk.
FurtherstudiesonfairpricedandrisksensitivedepositinsurancebyforinstanceChan
etal.(1992)illustratethatthemoralhazardcannotbepreventediftheregulatorcan
notobservethebank’srisk.
Toconfrontprivateinformationproblems,partialdepositinsuranceissuggestedasa
regulatoryinstrumentwhichbringsforthmarketdisciplineastheactuarieshaveto
measurethebank’sriskandalsouninsureddepositorsmonitorthebank.Peters(1994)
pointsoutthattheinformeduninsureddepositors,withtheirownendowmentsatrisk,
willmonitoranddisciplinebanksbetterthangovernmentalregulatorsdo.
Risk-basedcapitaladequacyisanothercuretothemoralhazardissue.Thisideapro-
videdsupportsfortheFederalDepositInsuranceCorporation(FDIC)ImprovementAct
of1991intheUSandalsoevolvedintheBaselIguidelines.FDICpromptcorrective
actionmandatesprogressivepenaltiesagainstbanksthatexhibitprogressivelydeterio-
ratingcapitalratios.Bankclosureisconsideredasathreattoreduceincentivesforrisk
inthislaw.DahlandSpivey(1995)investigatebanks’effortsforrecoveryunderthe
closurethreatforcedbytheFDIC.Theyfindthatthedeterminationoffailureforan
undercapitalizedbankisbetterdefinedintermsofthebanks’capacityforrecoverythan
thelikelihoodforfurtherdecaysincethebankcanrecapitalizequicklybyequityinfusion.
EmpiricalstudiesassessingthecostandbenefitoftheFDICpromptcorrection,suchas
JonesandKing(1995),suggestthattherisk-basedcapitalstandardsshouldimproveto
betterrecognizethecreditriskoftroubledbanks.
Assessingregulatoryclosurepolicyshowslessefficiencyasexpected,thoughitisnot
sociallyoptimaleither.Forinstance,BootandThakor(1993)arguethattheregulator
caresaboutitsreputationanddoesnotexertclosurewhenitisneededandthisagain
raisestherisktakingbybanks.Insteadofatoughclosurepolicy,Friesetal.(1997)
proposeoptimalreorganizationofthebankandclosurerulebesidefairpricingofdeposit
guarantees.Theotherbranchofstudiesfocusingonmoralhazardissues,e.g.Leland
(1994)andLelandandToft(1996b),worksonthecapitalstructuretopreventasset
substitution.The1988BaselIcapitalframeworkevolvedovertime.TheBaselcommitteeissuedan
amendmenttorefinetheframeworktoaddressrisks,e.g.marketrisks,otherthancredit
risk.Accordingly,bankswereallowed,subjecttostrictquantitativeandqualitative
standards,touseinternalvalue-at-riskmodelsasabasisformeasuringtheirmarketrisk
capitalrequirements.InJune1999thecommitteeissuedaproposalforanewcapital
adequacyframework.Afternearlysixyearsofchallengingworks,theBaselIIcapital
frameworkwasreleasedinJune2004.Itconsistsofthreepillars:minimumcapital
adequacyexpandedstandardsofthe1988Accord;supervisoryreview;andregulatory
closuretostrengthenmarketdiscipline.
64
CHAPTER4.THETHEORIESFOBANKTIONREGULAFollowingtheworksonhowtorefineregulatorystrategieswhichresultedintheBasel
IIstandards,mostofliteraturepriortotherecentcrisishasfocusedonhowtomixthe
threepillarsofBaselIIandimprovetheirimplementation.Prescott(2004)verifiesthat
thebankshaveincentivesnottorevealthetruelevelofrisk.Stochasticauditisfound
tobemoreeffectivecomparingtotheperiodicalbanks’reportsoftheirrisks.Inamodel
ofoptimalbankclosurewithstochasticauditBhattacharyaetal.(2006)findanoptimal
combinationofcapitalrequirement,closureruleandfrequentauditwhichcaneliminate
risk-takingincentiveforbanks.Decampsetal.(2004)andDanglandLehar(2004)take
asimilarapproachtowardsthegamblingforresurrectionproblemforbanksindistress.
FRepullourther,andthereSuarezareresearc(2004)hfoescusonondetailsloanofpricingtheBaandselIIdemimplemenonstratethattation.theForbanksinstance,which
adopttheinternalratingbasedontheBaselIIattractlowriskfirmsbyreductionin
.srateloantheirConsideringbanksasliquidity-creators,thebankfragilityissuerelatesalsotothecapital
marketrisksandthemarket-drivenfragility.Inthisregard,BootandThakor(2008)
reviewtheexistingliteratureontheinterbankrelationshipaswellastheintegrationof
banksandmarkets.Intherecentyearsofcrisissomeempiricalresearchesexamined
theeffectivenessofBaselII.Alsotherehavebeenstudiesabouttheregulatorypolicies
inemergingmarkets.Theviewonbanksasinstitutionsthatarecloselyrelatedto
eachotherandtotheentireeconomydirectedrecentstudiestofocusontheanalysisof
regulation.bankingsystemicThisnewstrainintheliteraturemotivatesanewsurveytocollecttheirfindingsandex-
plainstrategiesdifferendeptendonregulatorythebacproposalskgroundinanproblems,analyticalwhetherframewitisork.anTheexogenousoptimalshockorregulatoryone
ofthemoralhazardissues.Idescribethepossibleregulatoryconfrontationsrelatedto
eachcategoryofproblems.
Thepaperfollowsinthenextfivesections.Section4.2outlinesthebasicsetupandbank
canfailureapplyproblemtos.Inindividualsectionbanks.4.3,ISectionreviewdiff4.4erentdiscussespoliciesthethateffectstheofregulatorysystemicauthoritfailures.y
SectionSubsequen4.6tly,includessectionthe4.5statisticspresentsofthetheregrecentulatorycrises.propAtosalslast,addressingsection4.7systemicsummarizesrisk.
concludes.and
4.2TheBasicModel:FailuresinBanks
Marketfailurescanprovidetheintuitionfortheexistenceofasupervisoryauthority.
Thissectionconsistsofthebasicsetupthatallowsforastringentanalysisofthepar-
ticularproblemscausingmarketfailuresinthebankingsector.Thedetailsconcerning
possibleregulatoryactionsareinvestigatedinthenextsection.
4.2.THEBASICMODEL:FAILURESINBANKS
65
Inariskneutralworld,assumearepresentativebankreceives1unitofdepositatdate
0.HavingequityEthebank’stotalwealthA=1+Ecanbeinvestedinaliquidrisk
freeassetwhichreturnsr>0,perunitofinvestmentatdate1.Themanagerworking
forshareholders,canalternativelygiveloanstoriskycredits.Tomonitorcreditorsand
haveless1risk,thebankhastobearcoste≥0drawnoutofthewealthatt=1.This
regimeofoperation,denotedbyi=1,generatesR>rperunitoftheinvestment
withprobabilityP1orzerootherwise,attimet=1.Ho2wever,becauseoftheeffort
cost,theshareholdersorthemanagermaydecidetoshirk(i=0)whichincreasesthe
risk,reducingtheprobabilityofsuccesstoP0<P1.The3shareholderscannotobserve
themanager’sdecisionuntilthereturnisrealizedatdate1.Iftheyaskthemanager
tostopmonitoringshewilldo,buttheycannotforcethemanagertomonitor.This
happenssincethemanagerreceivessomenon-pecuniarybenefitQ>0iftheshirking
regimesucceedsandgeneratesR−q,q≥0,perunitoftheinvestmentattheendof
d.rioeptheThedepositorsarepaidafixedamountDatdate1.Riskyregimeibringsthetotal4
expectedprofitattheendofperiod,
Πi=Pimax(0,A(R−(1−i)q)−ie−D).(4.1)
Thereturnishigherundermoreriskyregimewhenitsucceeds,i.e.R−q≥R−ewhich
requirese≥q.Butshirkingisinefficientinthesensethatitstotalreturnislessthan
monitoringregime:R−q+Q<R.
Fortheexpectedprofitofriskyoperationtobepositive,thecapitalshouldexceedsome
thresholds,
E≥D−R+q+i(e−q).
R−(1−i)q
(4.2)
Ifthebankcoulddefinethedepositpaymentendogenously,themanagerwouldpropose
Dsuchthatthebankwouldbesolventincaseofsuccess.Thismeansfrom(4.2)forthe
depositpayment
D≤(1+E)(R−(1−i)q)−ie.(4.3)
Sincethebankshouldmotivatedepositors,theyhavetopaythematleastthesameas
theriskfreereturn,i.e.D≥r.Thenitfollows
1Thedecisionorplanofoperatingwithaspecificportfolioisknownastheregimeofoperation.
2Tostopmonitoringthecreditors.
3Thedepositorshavenoinformationatall.
4Inthisriskneutralsetup,theinvestmentdecisionisoptimallytoinvestallinariskyassetor
nothing.Thishasbeenjustifiedinmysecondpaper.
66
CHAPTER4.THETHEORIESOFBANKREGULATION
(1+E)(R−(1−i)q)−ie≥r.(4.4)
Onemainproblemofhighrisk(lowprobabilityofsuccess)isanegativenetpresentvalue
(NPV).Thisoccurswhenthereisnomonitoringonthecreditors,whereforeachunit
ofinassumevDestmen+et>P0(DR.5−q)Then,−r<the0.GivshareholdersendepositratherpaymenpreferstD,lesswithoutriskiffΠloss≥ofΠ,generalitwhichy
01requiresRfortheR−qtotalcapitallevel,
E≥(P1−P0)(D−R)+P1e−P0q=Eˆ.(4.5)
(P1−P0)R+P0q
HazardMoralThe4.2.1Thechoiceofregimedependsonhowtheshareholderscompensatethemanagertowork
fortheirinterest.Thispartofworkoutlinesthepossiblemanagerialcontractthatthe
shareholderscanofferandmotivatethemanagertooperateintheirfavoriteregime,
thoughitmayberisky.
Whenthemanagerispaidacertainsalarysindependentofherperformance,theex-
pectedprofitoftheshareholdersin(4.1)changessubstitutingA−sforA.Thenthe
shareholderstakethelessriskyregimeforlargecapitallevels,i.e.E≥Eˆ+s.Ifthecap-
italwasnotsufficientlyhightheshareholderswouldprefermorerisk.WhereE<Eˆ+s,
theywouldonlymakeafixedpaymentstothemanageratthebeginningoftheperiod
aslessasheroutsideoptionutilityinordertohaveherinthefirm.Thenthemanager
wouldworkforherprivatebenefitandshirkwhichwouldbealsointheinterestofthe
shareholders.However,iftheshareholderswanttohavelessriskthemanager’ssalaryshoulddepend
ontheperformancewhichinfluencesthesuccessandfailureofthebank.Tomotivatefor
thelessriskyregimetheshareholdersofferanincentivecompatible(IC)contracttothe
managerpayingasalarysonlywhenthebank’soperationsucceedsandthemanager’s
expectedprofitunderregimei=1ishigherthanunderregimei=0:
P1s≥P0(s+Q)⇐⇒s≥P1QP−0P0.(4.6)
NotethattheshareholdersmakesuchacontractifffortheirexpectedprofitΠ1(s)≥
Π0(s)where
Πi(s)=Pimax(0,A(R−(1−i)q)−ie−D−s).(4.7)
5Otherwise,thecalculationchangesbutnottheresult.
(4.7)
4.2.THEBASICMODEL:FAILURESINBANKS
Forthiswehaveanewcapitalrequirement,
E≥(P1−P0)(D−R+s)+P1e−P0q=E∗.
(P1−P0)R+P0q
67
(4.8)
Anotheroptionfortheshareholdersistodefinethesalaryasashareoftheprofit6,
si=αΠiwherePiiisdefinedin(4.1).Iftheshareholders’expectedreturn(1−α)Πiis
higherunderregimei=1,theICconstraintchangestos1>s0+P0Q,or
α(P1[AR−e−D])≥α(P0[A(R−q)−D])+P0Q.(4.9)
Sinceαisindependentfromtheregimechoice,theshareholdersdecisionisredundant
totheonepresentedin(4.5).Therefore,ifE>Eˆ,fractionαmustsatisfy
QP0α≥[A(P1−P0)R+P0q]−eP1−D(P1−P0)=αˆ.(4.10)
4.2.2DepositInsuranceandtheMoralHazard
Incaseofinsolvency,evenifalltheoutcomeofitsoperationgoestothedepositors,
itislessthanthepromiseddepositpayment.Thus,theexcessiveriskofdefaultisat
theexpenseofdepositorsintheabsenceofanyguarantee.Thissubsectionexamines
whetherprotectingdepositorsisaneffectivestrategytopreventfailureinthebanking
sector.Adefaultedbankhastogobankruptandtheshareholdersandthemanagerreceive
nothing.Afairpriceddepositinsurancecanprotectthedepositors.Theinsurercanbe
aprivatecompanyorthestate.However,wheneverthehighamountofdepositpayment
isnotmanageablebytheprivateinsurerthestatehastointervene.Sincealargescale
defaultcaninfluencetheentireeconomy,thestatehastobearthisresponsibility.
Forhavingafairedpriceinsurance,thepremiumequalstheexpectedvalueoftheworst
i.e.case,default
m=D(1−P0).(4.11)
whichshouldbealsosubtractedfromtheprofitfunctionin(4.1).Thestatecould
thenlevyataxonthebankequaltom.Thispreventssubsidizationofthebankby
taxpayers,incaseofadefault.However,theinsurancepremiumortaxwouldshiftthe
capitalrequirementforlessrisk-takingtoEˆ+m.Regardingmanagerialcontract,the
fixedICsalarysdoesnotchangesincetheICconstraint(4.6)remainsthesame.
6SeeforinstanceAcharyaandYorulmazer(2007)thatIexplaininsection4.4.
68
CHAPTER4.THETHEORIESOFBANKREGULATION
Ifthemanagerispaidashareoftheprofit,theshareholders’decisionisasabovebut
theICconstraint(4.9)changes.Inotherwords,A−mappearsinsteadofAinboth
sidesof(4.9).Thisraisestheminimumrequiredmanagerialsharebecausenowweneed
QP0∗α≥[(A−m)(P1−P0)R+P0q]−eP1−D(P1−P0)=α.(4.12)
whereα∗>αˆ.Thisshowsthattheinsuranceortaxsystemincreasesthesharehold-
ers’risk-takingincentivesbyshiftingtheminimumcapitalthresholdupward.Withan
analogousargument,theinsurancedoesnotreducethemanagerialmoralhazard.
4.2.3IntroducingtheRegulatoryActions
Accordingtotheresultofthelastsubsection,thereisaneedforaregulatoryagency
whichnotonlyprovidesresolutionsincaseoffailurebutalsohaspowertoforceex-ante
olicies.preductionriskForlowcapitallevelstheshareholdersprefertheriskierregimeofoperationandletthe
managerfulfiltheirinterest.Asastraightforwardresultoftheshareholders’risk-taking
beingrelatedtothecapitallevel,theregulatormayofferacapitaladequacyruleto
preventtherisk-taking.Itfollowsthattheregulatorclosesthebankwherethecapital
isbelowtherequiredlevelA∗orAˆdependingonthemanagerialcontract.
Mysimplesetupdoesnotincludeanybankruptcycost.Intherealworld,anybank
failureinfluencesitscreditorsanddepositors.Thecreditorswillnotreceivefurther
investment.Andforthedepositors,theycannotfollowtheirplantousethepayment.
Forinstance,acompanymaystopitsdevelopmentsinceithasnotreceivedthedeposit
payment,orreceiveditlateronlythroughtheinsurancepayment.Thesesocialcosts
maketheclosurepolicynottobeex-postoptimal.MailathandMester(1994)describe
howtheclosurepolicycannotbeimposed.Yet,giventheincentivecompatiblecontract
thebankwithlessriskyloansmaydefaulttoo.Thus,thebankingsystemdemands
foroptimizingtheresolutionpoliciesratherthanonlyclosure.Freixas(1999)considers
partiallyinsureddepositsandexaminestheliquidityprovisionpolicywhereclosureisnot
ex-postoptimal.FreixasandRochet(2010)concentrateonintroductionofasystemic
taxthatrequiresaregulatoryauthoritywiththepowertoreplacethemanagerand
shareholders.Thefollowingsectionsdescribehowanoptimalresolutionpolicydependsonwhetheritis
anindividualbankfailureorasystemicfailure.Thenextsectionsurveystheresolution
policiesforindividualbankdefaults.Explainingregulatorystrategiesfocusedonasingle
bankmakesaproperbackgroundforextendingthemodelfurthertoexaminesystemic
crises.Moresystemicriskregulatorypoliciesarepresentedinsection4.5.
4.3.THERESOLUTIONOFINDIVIDUALBANKFAILURES
69
4.3TheResolutionofIndividualBankFailures
Thissectionaddressesthepossibleinterventionpoliciesofastrongregulatory/supervisory
authoritytoresolvecostlybankruptcies.Themainproblemthattheregulatorfaceswhen
takingactionagainstariskyorfailedbankisknownastime-inconsistency.Thisprob-
lemandthealternativestodealwithitareexplainedinthenextsubsections.Ineach
case,thebasicset-updescribedabovemaychangeslightlytofittherequirements.For
instance,thetimehorizonandriskaversion/neutralitymaydiffer.Weseehowpolicy
implicationsmaychangefromonesituationandsetofassumptionstotheother.
Time-InconsistencyThe4.3.1Problem
Astrongregulatorshouldhavethepowertoshutdowntheoperationofabankwhichis
takingexcessiverisk,asthisex-postreactioncaninfluenceex-antetheinvestmentofthe
bank.Inorderfortheregulatortohavetheopportunityofsupervisoryvisittothebank,
Imustconsideratimehorizonmorethanoneperiod.MailathandMester(1994)assume
thattheregulatorhastwooptionsatdate1andthebankhastwoperiodsofoperation
iftheregulator,visitingatdate1,letsitoperateforonemoreperiod.Thissubsection
analyzesthemodelofMailathandMester(1994)whichlooksintotheeffectivenessof
theregulatoryclosurepolicy.
Iexcludethefrictionbetweenthemanagerofthebankandtheshareholders.Suppose,
thebankdecidesonlybetweentheliquidassetwithcertainreturnr(safe)andregime
ofoperationi=1(risky).Thebankreceives1unitofdepositatthebeginningofeach
periodandinvestsall.Theriskyassetsmatureattheendofthesecondperiod.Forless
complicationassumetheriskyloansarefreeofthecostofmonitoringeffort,i.e.e=0.
TheinefficiencyoftheriskyassetisdefinedashavingnegativeNPV,P1R<r.Thereis
afixedcostofclosureC,bornebytheregulatorwhorepaysfullythedepositorsofthe
bank.failedNotethattheregulatorisredundantifthebanktakesnoriskyinvestmentforthe
twoperiods(i1,i2)=(safe,safe).Ifthebanklosesinthesecondperiodithastopay
everythingevenoutoftheprofitofthefirstperiod.Therefore,itprefers7(risky,safe)
strictlyto(risky,risky)ifftheNPVislargerfor(risky,safe)thanfor(risky,risky),
P1[(R−1)+(r−1)]>2p12(R−1).(4.13)
First,supposethebanktakesthestrategyofswitchingfromoneregimetotheother
atthebeginningofthesecondperiod.Theregulatorypolicyistoclosethebankifit
choosessafeforthefirstperiodbecausethebankwouldotherwisechooseriskyforthe
7(risky,safe)and(safe,risky)areequivalent.
70
CHAPTER4.THETHEORIESOFBANKREGULATION
secondperiod.Hence,theoptimalsolutionisforthebanktoplay(risky,safe)andfor
theregulatortoleaveitopen.
Next,considerthebankalwaysplaysriskyinthesecondperiod,ifitisopen.Ifthe
regulatorclosesthebanktheexpectedcostfortheregulatorwillbe(1−P1)+Cthat
istheclosurecostplusthedepositpayment.Ifthebankremainsopentheregulator’s
expectedcostis2(1−P1)2+2(1−P1)P1(2−R)+C(1−P12).Thefirsttermisthe
expecteddepositpaymentwhenthebanklosesinbothperiods.Thesecondtermisthe
expectedcostifthebanksucceedsinoneofthetwoperiods.Andthelasttermisthe
costofclosureincasethebanklosesinatleasoneofthetwoperiods.Comparingthe
regulator’sexpectedcostsofpolicies,weseethatthebankwillbeclosedifftheexpected
costofclosureislessthanleavingthebankopen,
C<(1−P1)(1−2P1(R−1)).(4.14)
2P1When(14)doesnohold,thebankplays(risky,risky)becausetheregulatorwillplayopen.
Otherwiseif(4.14)issatisfied,thebankchoosesbetweentakingriskfacingliquidation
orstayingundercertainty.Butthentheregulatorknowsthatthebankwouldplayrisky
inthesecondperiod.Inasimilarmethodwecanfindthatthebankplaysriskyatthe
firstperiodandtheregulatorclosesitiff
C<(1−P1)(2−r).(4.15)
P1
(4.15)
Therefore,thecostofclosureistheimportantvariabletotheregulator.Sinceclosure
maybelesscostlyinthefuture,theregulatorcannotcommitex-antetobesevere.When
thedepositvalueofabankisveryhighthesocialcostofclosurebecomeslargethat
mayleadtonon-liquidationandbailout.Thispolicygeneratesmoral-hazardincentives.
This”toobigtofail(TBTF)”problemismorediscussedinthenextsectionasitisnot
onlyanissueofasinglebank,butalsomayaffectthebankingsystem.
4.3.2OptimalLiquidityProvision
Whenbankclosureandliquidationofassetsarenotex-postoptimal,acentralbankmay
finditessentialtoprovideliquiditytothebank.Thisideahasbeenaddressedasthe
LenderofLastResort(LOLR).Thequestioninthispartoftheworkisthathowthe
liquidityprovisioncanoptimallysolvethetime-inconsistencyproblemwhenthecostof
rge.laisbankruptcyDespiteallargumentsagainstLOLRthatitwillcausethecentralbanktofacethecon-
depsequenendstonmoralthehazarddegreeptoroblemwhichaandbank’sincreasingdepositsrisk,areFreixasinsured.F(1999)reixasclaims(1999)thatinvtheestigatesresult
4.3.THERESOLUTIONOFINDIVIDUALBANKFAILURES
71
twopossiblesourcesofrisk,i.eexogenousandendogenous,andwhethertheregulatory
policyshouldchangefromonecasetotheother.Hesortsoutanefficientimplemen-
tationofliquidityprovisionbasedonacostbenefitanalysis.Themaindifferencesto
thesetupfromsection4.2arethatβpercentofdepositsareuninsuredandthebankis
investingonlyintheriskyasset(i=1).
Anegativeexogenousliquidityshockwhichcausesfailureofriskyloansbringsfinancial
distress.Thetimehorizonisoneperiod,attheendofwhichthecentralbankreacts
incaseofadefault.Thepromisedpaymenttoinsuredanduninsureddepositsare
(1−β)(1+rD)andβ(1+rL),respectively.Theexpectedvalueofthebankunder
regulatorybailoutorliquidation(incaseofinsolvency)isdenotedbyVLandVC.Since
theliquidationvalueisnon-zero,thefairpricedinsurancepremiumchangesto8
m=(1−P1)max[(1−β)(1+rD)−VL,0]
andthesubsidybybailoutsumsupto
S=β(1+rL)−max[VL−(1−β)(1+rD),0],
(4.16)
(4.17)
assumedtobepositive.LetΔbethedifferencebetweencostsofcontinuationand
liquidation.TheregulatorydecisiondependsonΔwhichisdecreasinginclosurecostC.
Whenthecentralbankhasnocommitmentforclosure,sinceCisincreasinginbank’s
wealth,A=E+1,forsomerangeofparameterstheTBTFproblemholdsinthesense
thatifabankwithassetAisbailedout,alllargerbankswouldbeoptimallyrescued.
Assumethatthecentralbankmakescommitmenttoaspecificregulatoryresolution
policy.Letθ>0betheprobabilitythatthecentralbankrescuesthebank.The
optimalregulatorypolicyisdeterminedbymaximizingtotalsurplusofthebank’sactions
subjecttotheincentivecompatibilityconditionwhichrequiresahigherbankprofitunder
bailoutforanygivenβ.Freixas(1999)assumesthatCisincreasinginβ.Thus,hefinds
thateithertobailoutortouseamixedstrategy(betweenliquidationandbailoutwith
θ>0)isoptimaldependingontheamountofuninsureddebt,β.Themixedstrategy
isinterpretedas”constructiveambiguity”,whichhadpreviouslyonlybeenjustifiedin
el.leveconomicsmacroInthesecondpart,Freixas(1999)takesintoaccountthemoralhazardproblemwhere
therisklevelischosenendogenously.Theresultabouttheoptimalregulatoryissimilarly
dependentonβaslongasthemonitoringeffortcostisnotconsidered.FirstIdescribehis
generalsetupwithendogenousrisktaking,thenexplainhowthemonitoringassumption
influencestheoptimalregulatoryactions.
Thebankhasacontinuumofrisklevelsandchoosestheprobabilityofsuccessatacost
ϕ(P),assumedtobestrictlyincreasing,convexandtwicedifferentiable.Thedifference
8(4.11).toitCompare
72
CHAPTER4.THETHEORIESOFBANKREGULATION
tomysetupis9thatinhismodelthedifferentiabilityofϕ(P)isnecessaryforoptimizing
theandriskthelevel.manager.Indeed,Theinhisprobabilitpapeyroftheregrossisnreoturnagencyx=x(problemβ)isbPet=wPeen(x).theThesharehprofitoldersof
thebankfortotalreturnequals,
Π=P[x(β)−β(1+rL)−(1−β)(1+rD)]−m−ϕ(P).(4.18)
ThefirstbestPˆcanbeobtainedfromx(β)=dϕdP(P).However,sincerateofreturnto
uninsureddepositsrLandmshouldbealreadyadjustedrationallyforP,thefirstorder
condition(maximizingΠ)yieldshigherrisk,i.e.smallerprobabilityofsuccessthanPˆ.
RewriteprofitfunctiontoobservetherelationshipbetweenparametersθandP,
Π=Π0+(1−P)θS,(4.19)
whereΠ0istheexpectedprofitthebankwouldgainintheabsenceofanysubsidy(if
nobailout).ConcavityofΠ(resultingfromconvexityofϕ(P))andthederivativeofthe
firstorderconditionshowthatPisdecreasinginθ.Itmeansthatliquidationismore
frequentasthebailoutpolicywouldincreasethebank’sriskiness10.Inaddition,welfare
analysisshowsthattakingmoreriskdecreasessocialsurplusesofbailoutpolicy.Yet,
theoptimalpolicyforthecentralbankiseitherasystemicbailoutoramixedstrategy.
Inthecasethattheeffortlevelofthebankdeterminestherisk,theprobabilityofsuc-
pcessolicyPisandsimilaritscosttoϕotherarethcases;ushofunctionswever,ofFeffortreixaslev(1999)elev(aberifiesoundedthatvmoralalue).Thehazardoptimaleffect
apprescueearsadbankifferenwithtly.smallThough,leveltheofsocialuninsuredcostofdebt;abankruptcylargerimpliesamountthatofitisuninsuredoptimaldebtto
generatesaclosermonitoringofthebankbyitscreditors.Hence,themoralhazardef-
fectdebtwandorkstighcounterter-balamonitoring.nced.11AThismixedisthestrategycasestimalsoulateswherebanksthetoLOLRkeepismoableretouninsuredcommit
tobank’sbailoutriskiness,withsomedecreasespositivemonitoringprobabilityeffort.Nevanderttheheless,marginalthebbailoutenefitspofolicyrescuingincreasesbanks.the
TheworkofCordellaandYeyati(2003)onthemoralhazardproblemfocusesonthe
valueeffectofbail-outpolicywherethecentralbankannouncesandcommitsex-anteto
rescuebanksintimesofexogenousmacroeconomicshocks.Theprobabilityofsuccess
notonlydependsontheriskchoiceofthebank,butalsoisaffectedbyastatedependent
termη,whichisunobservablebythecentralbank.Inadynamicmulti-periodsetup,
9Insection2ofthispaperIconsideramonitoringeffortcosttobringahigherprobabilityofsuccess.
Thus,inmymodelϕ(P)takesonlytwovalues:eforP1but0forP0.
10Sufficientconditionsareconsideredtoavoidcornersolutions.
11Theresultisinlinewiththerationalethatsubordinateddebthelpstohaveabetterbanking
discipline.
4.3.THERESOLUTIONOFINDIVIDUALBANKFAILURES
73
theriskyinvestmentreturnsxwithprobabilityP(x,η)=ηP(x)where0≤η≤1isi.i.d
andP(x)isdecreasing.12
Withfulldepositinsurance,intheabsenceofbail-outpolicy,itisshownthatquite
intuitivelythebankneverchooseslowerriskthansociallyoptimal.Thecentralbank
followsaconstructiveambiguityapproach.Theshareholdersmayrecapitalizethebank
incaseoffailurebyraisingcapitalinthecapitalmarket,evenifthecentralbankdoes
notbailout.Inthenon-recapitalizationscenario,theprobabilityofbailoutθbecomes
anegativefunctionofη.Thenastate-independentbail-outpolicy,θ(η)=θ,increases
risk-takingofthebankaswecouldexpect.However,regardlessofthebank’sdecisionon
capitalization,thecentralbankminimizestherisk.Theoptimalrisk-minimizingbailout
policyisobtainedbyathresholdηˆbelowwhichthecentralbankrescuesthebankwith
certaintyandletsitfailotherwise.Underthisstrategy,thebankalwaystakesriskmore
thanoptimallevel.Analternativeoptimizingapproachistomaximizingthecentral
bank’sobjective,whichconsidersthepossibleefficiencycostofbailout.Thisapproach
bringsaboutsimilarregulatorypolicywithathresholdatleastaslargeastherisk-
minimizingthreshold.Inotherwords,thecentralbankisneverlessgenerousthanthe
.olicyprisk-minimizingAccordingly,constructiveambiguityisbeneficialtoruleoutthemoralhazardproblem
arisingfromthebank’sendogenousrisktaking.However,onoccasionofmacroeco-
nomicshocks,systemicalinterventionofthecentralbankcontingentontheexogenous
conditionsisdesirableasitcreatesrisk-reducingvalueeffects.
4.3.3TakeoverasanIncentivesForRiskReduction
Besideclosureandbailoutpolicies,thesupervisoryagencymayallowfortakeoverofthe
failedbankahealthyfinancialinstitute.Thispolicyhasbeenpromotedasanincentive
program.Inadynamicmodel,PerottiandSuarez(2002)arguesthatasolventbank
canbuyafailedinstitutionandbenefitfromtheincreaseinitschartervalue.
InthesetuppresentedbyPerottiandSuarez(2002),anewbranchofthebankentersthe
marketonarandombasisdeterminedbytheregulator.Theregulatordecidesalsohow
toresolvethefailures.Ifbothbranchesfail,shewillemploytwonewbankerandlets
themtocompeteinaduopoly.Butifonlyonebankfails,sheshouldoptimizewhether
toallowfortakeoverbytheotherbranch.
Foreachbank,thereturntoaprudentlendingiscertain.Thereisanopportunity
forspeculativelendingwhichgeneratesextrareturnbutleavesthebankexposedto
exogenoussolvencyshocks.Monopolyismoreprofitableforabankduetotheabsence
12TosimplifythemodelthebankonlychoosesMarkovstrategiesinrisk-taking.Thissimplification
makesaclosedformsolutionpossiblebutreducestheproblemtoaspecificcaseinwhichrisk-takingin
eachperiodisindependentofandhasnoimpactonotherperiods.
74
CHAPTER4.THETHEORIESOFBANKREGULATION
ofcompetitionbuttherentcomesatacost.Thestochasticentryofthenewbranch
turnsmonopolytoduopoly.Therefore,thelendingstructureofeachbranchimpactsthe
otherbank.Abankmayspeculateinamonopolybutinduopolyitcanbeallowedto
buythefailedbranchifitissolvent.Thus,inaduopolythebankhaslessincentivefor
speculativelendingbecauseoftherewardforbeingsolvent.Bytakeoverthesurvived
bankistemporarilyamonopolist.Thehigherrentinthiscasemakesanewbranch
willingtoenterthemarket.
Thesupervisoryagencyasasocialplaneroptimizestheentranceandtakeoverpolicy,
minimizingthesociallossesincaseoffailures.Itleadstoallowingtakeoverandimple-
mentinganoptimummixtureofprudenceandcompetitionthroughanadequatelevelof
newentryrate.Thiswaybanksconvertfromspeculativelendingintostrategicdecisions
inordertoremainsolvent.
RiskSystemicRegulating4.4
Failureofasubstantialpartoftheeconomy,meaningalargeinstituteormanysmallones,
areconsideredassystemicfailures.Mostlytheregulationpolicieshavesofarfocusedon
individualbank’srisk.Therefore,insolvencyofabankisdealtwithaccuratelyinnormal
times.However,inadditionthereisariskofsystemicfailuresthatleadtoseverecrisis.
Therecentcrisisraisedattentiontotheneedforrestructuringregulatorystrategiesin
ordertotakeaccountofsystemicrisks.Thissectionstateswhyitisnecessarytoregulate
systemicfinancialcrisesandinvestigatestheexternalitiesinvolvedinasystemicfailure.
In2008thestatesletLehmanBrothersfailinordertolimitmoralhazardrisk-taking.
Onthecontrarytothegovernment’sinterest,itledtoaseriouscollapseofthefinancial
system.Eventually,failureofthislargefinancialinstitutespreadtoasignificantpart
oftheeconomythroughdirectandindirectinterconnectionstootherinstitutes.Then,
thesecondexternalityappeared.Noprivatesector,includingbanksandinsurancecom-
panies,couldtakeoverandcompensateforthelargescalefailuresofmanybanksand
institutes.Hence,therecentcrisisshowstracesofexternalitiesintwomaindirections.Thefirst
externalityisthespilloverriskofonebankonotherbanks.Thesecondisthecollective
failuresofbankswherehealthybankscannottakethemover.Theformerisdiscussed
withinamodelofcontagionandthelatterasthetoo-many-to-failproblem,inthe
subsections.wingfolloIfthebankingsystemisindangertocollapsealltogether,naturallythesupervisory
hastotakeprecautionaryreactions.AfterthefailureofLehman,thegovernmentcould
notletanyotherlargefinancialinstitutefail,despitethefactthatthebail-outpolicy
strengthenedmoral-hazard.Thecostsandinconveniencesongovernmentsandsuper-
4.4.REGULATINGSYSTEMICRISK
75
visoryauthoritiesdemonstrateneedsformacro-prudentialregulatorystrategiesthatis
thetopicofthenextsection.
4.4.1ContagionandTooMuchRelatedBanks
Toillustratethefirstexternalityeffectabankfailurehasonthebankingsystem,I
refertothecaseoftransmittingbank-run,namedcontagion.AllenandGale(2000)
studythefragilityofabankingsystem,wherebankrunsspreadinthesystem.Their
modelisnotableformypurposesinceitseparatestheinter-bankstructurefromthe
risk-takingbehavior.Thisapproachhelpstoemphasizethespilloverexternalityand
avoidscomplexitycausedbytheriskoptimizationchallenges.AllenandGale(2000)
considertheliquidityprovider13roleofbankswhichmaximizetheirdepositors’utility.
Assumetherearefourbankseachoperatinginadifferentregion,denotedbyA,B,C
andD.Forsimplicity,supposeeachbankhasnoequity,i.e.E=0,atdate0.The1
unitofdeposit(providedbythedepositorsofthesameregion)attimet=0istheonly
availablesourceofwealthtoeachbank.Depositorsdemandd1andd2atdates1and2,
respectively.14However,eachbankreceivesearlydemandswithprobabilitywHorwL
ineachregionatdate1,where0<wH<wL<1.Themanagerworksforthebank
withoutmoralhazardproblem.Theliquidityproblemraisesfromthebanksinvestment
inanilliquidassetwhichtakestwoperiodstomature.Itmeansthateachbankinvests
amountLinanassetwhichreturnsR>1per1unitatt=2.Therefore,abank
mayhavetoliquidateassetsprematurelytopaytodepositors.Liquidatingoneunitof
investmentproduces0<λ<1unitatt=1.
Eachbankdecidesabouttheinter-bankmarket,aninvestmentportfolioandadeposit
contract.Supposeacompletemarketinwhicheverybankhasdepositsineachofother
regions.Sinceallregionsandconsumersareequivalent,withoutlossofgenerality
assumeinregionsAandCthereareearlyconsumerswithlowprobability,butinB
andDwiththehighprobability.Inthecompletemarketbankscaneasilytransfertheir
excesssupplyoftheliquidassettotheregionswithexcessdemandsatdate1.Suppose
everybankhasdepositz=(wH−γ)/2ineachbankofthreeotherregions,where
γ=wH2+wL.Now,thebankshavetochooseonlythedepositcontracts,d1,d2,andthe
riskyinvestmentL.Eachbankmaximizestheexpectedutilityofconsumersattime
t=0inthefollowingway,
γu(d1)+(1−γ)u(d2).
(4.20)
13TheframeworkofDiamondandDybvig(1983).
14Thedepositorscouldnotexpectthesamelevelofutilityabankintheirregionbringsthemin
.autarky
76
CHAPTER4.THETHEORIESOFBANKREGULATION
Asthetotalofdepositors’consumptionineachperiodisaconstant,itisoptimalforthe
banktoholdtheliquidasset(byitselforasdepositinotherregions)fortheearlydeposit
demands,i.e.γd1≤r(1−L).Itgivesthefeasibilityconstraintofthesecondperiod,
(1−γ)d2≤RL.Theobjectivefunction(4.20)increasesaslongastheconsumptioncan
beshiftedfromearlydepositdemandtothelatedemandsusingtheliquidasset.The
firstorderconditionisobtained,u´(d1)≥u´(d2),whereu´(.)isthefirstderivative.This
conditionstopsshiftingdepositdemanduntild1≤d2whichisanincentiveconstraintfor
thedepositorswhowaitlonger.Otherwise,thedepositorswithlatedemandwouldbe
betteroffwithdrawingatdate1.Thisoptimizationproblemisthesameasifacentral
planneroptimizesrisksharing.AllenandGale(2000)callthisoptimalallocationafirst
bestallocation,whichisalsoincentiveefficientasseenabove.Thereisnobank-runand
liquidation.prematureforneednoConsideraperturbstatewhichoccurswithprobabilityzero,suchthateachbankinB,
C,andDreceivesearlydepositdemandswithprobabilityγ,buttheycometothebank
inregionAwithprobabilityγ+,>0.Ifabankisinsolventitmayliquidatesomeof
theilliquidassettomeetitscommitmenttoearlydepositdemand.Butitpreferstopay
outofliquidassetsatfirst,andnextliquidatesthedepositsinotherbanks.Ifneither
liquidasset,nordepositliquidationhelps,the15bankwillliquidatetheilliquidassetsat
date1.Thisiscalledliquidation”pekingorder”.
Inordertopreventarun16indate2,abankwithafractionwofearlydepositsdemands
hastokeepatleast(1−w)d1/Runitsoftheilliquidasset.Sincetheamountofilliquid
assetis1−L,thehighestamountthatcanbeliquidatedatt=1is(1−L−(1−w)d1/R)
whichproducesthebuffer
b(w)≡λ(1−L−(1−w)d1/R)(4.21)
Aslongastheamountofilliquidassetabankneedstoliquidateislessthanthisbuffer,
thebankisinsolventbutnotbankrupt.Intheperturbcase,theassetsofthebankin
regionAarevaluedatr(1−L)+λL+3zd1atdate1.Thelasttermcomesfromits
depositsinthreeotherregions,asineachonedepositsarevaluedatd1.Theliabilities
ofbankAarevaluedat(1+3z)qA,whereqjisthevalueofabank’sdepositsinregion
j.Balancingassetsandliabilities,qAisfound:
qA=r(1−L)+λL+3zd1.(4.22)
z3+1ThebankinregionAisbankruptwhenever,
d1≤b(γ+).
15Itholdsforsmallλ.
16Thebankcannotpaytothelatedepositdemandsfully.
(4.22)
(4.23)
4.4.REGULATINGSYSTEMICRISK
77
ThelosstoeveryotherbankbecauseofbankruptcyinAisz(d1−qA).Thosebanks
willnotbebankruptiffthelossislessthantheirbuffer,
z(d1−qA)≤b(γ).(4.24)
ImaginethatregionAwasonlyconnectedtoB,andConlytoD.Then,bankrunin
onesectorofthemarketwouldnevertransmittoanothersector.AllenandGale(2000)
investigatethefragilityofsystemwhereregionsareincompletelyconnectedwhereeach
bankhasdepositonlyinoneneighborbank.RegionAhasdeposits2z=wH−γinB.
SimilarlyBinC,CinDandregionDhasdeposits2zinregionA.Undertheassumption
thattwobanksreceiveearlydepositdemandswithhighprobabilityandtwootherwith
lowones,thefirstbestallocationisstillachieved.Thereasonisthattheobjective
functionisthesameas(4.20)andthebudgetconstraintsforhighliquidityshocksat
dates1and2are,respectively,
wHd1=r(1−L)+(wH−γ)d1
[(1−wH)+(1−wH)d2]=RL,
whichequalthepreviousconstraints,
γd1=r(1−L)
(1−γ)d2=RL.
(4.25)(4.26)
Similarlyfortheregionswithlowliquidityshocksthesamebudgetconstraintshold.
Thus,inthiscasetheliquiditytransfermakesthefirstbestallocationpossible.Never-
theless,intheperturbsituationwhere(4.23)issatisfiedforregionA,thespilloverto
regionDcanbelargeenoughthat,
2z(d1−qA)>b(γ).(4.27)
Notethatbothinequalities(4.24)and(4.27)arepossible.Itmeansthat,forasetof
parametersthecompletemarketcanbesafefrombank-runcontagionbutnottheincom-
pletemarket.AsbankinAisbankrupt,itsassetsarevaluedlessthand1.Therefore,
thedepositofregionDinAisnotsufficientanditmustliquidatemorethanthesafe
buffer.ThisinturncausesbankruptcyforthebankinD.Inasimilarwaythelosses
transfertothebankinregionCandthentooneinB.Accordingly,allbanksconnected
byachainofoverlappingbankliabilitiesmustgobankrupt.
Asseenfragilityofasystemisdifferentundercompleteandincompletemarkets,but
thereisnotamonotonerelation.Actually,thelevelofinter-connectionamongbanks
determineshowacontagioncanspread.
78
CHAPTER4.THETHEORIESOFBANKREGULATION
IftheoutcomeinAllenandGale(2000)wererisky,similartomysetupinsection4.2,
thereturnsindifferentregionswouldnotbeperfectlycorrelated.Inthatcasebanks
wouldgainfromrisksharingandtheywouldholdclaimoneachother.Ex-ante,the
firstbestcouldbeachieved.But,ex-postrisksharingwouldnotbepossiblewhenthe
returnswereknown,asarrangementsandbankruptcyruleswouldnotworkproperly,in
additiontothecomplicatedanalysis.Thisexplainsinsomeextendthemorecomplexity
ofcontagionintherealworld,thatitleadstodifficultyofdealingwithcrisis.
Thisdiscussionofcontagionandfinancialfragilityconcentratesontheliabilitystructure
ofbanks.TheinterbankrelationshasbeenaddressedtogetherwiththeTBTFproblem.
Thesourcetothesystemicriskinbothissuescanbetheassetsideofthebanks’balance-
sheets.RochetandTirole(1996)investigatetheTBTFandsuggestpeermonitoring
amongcommercialbanks.Intheirwork,TBTFoccursifthepeermonitoringstarts
aftertheliquidityshockanditmoredependsonthesizeofinterbankloansthansizeof
theindividualfailedbank.FurtherworkoninterbankmarketisdoneinFreixasetal.
(2000).Theyshowthatononehand,interbankcreditlinesreducethecostofholding
reservestocopewithliquidityshocks.Ontheotherhand,acontagionisinevitable
intheseconnectionlines.Insolvencyofonebankaffectsthestabilityofthebanking
systembecauseofacoordinationfailure,evenifotherbanksaresolvent.Moreover,
thesubsidygeneratedinthenetworkofcross-liabilitiesallowstheinsolventbankto
continueitsweakperformance.Ifthecentralbankdecidestoliquidatethisbank,it
hastocompensateforpaymentsofthedefaultingbanktothedependingbanks.Here
twocoursesareavailable,inefficientliquidationofcounterpartsofaninsolventbankor
bailoutthedefaultingbank.Therefore,Freixasetal.(2000)resultinamoralhazard
.TBTFasproblem
4.4.2TooManyToFail
Asoftregulatorwhoex-antelowersmonitoringcapacityorex-postrescuesinsolvent
banks,not-beingsufficientlygenerous,triggersbankstocolludeondisclosingtheirlosses.
Thus,manybanksrollovertheirbadloanspassivelyratherthantoannouncebankruptcy
againstdefaults.Consequently,theregulatormayneedtorepeatrescueorrecapital-
izationinthefuture.Mitchell(1997)explainsthisissueandcallit“toomanytofail”
(TMTF).AcharyaandYorulmazer(2007)analyzestheherdingbehaviorofbanksleadingto
TMTF.Theirworkfocusesonbanks’inter-correlationofrisk-takingandcoversthe
threemainregulatoryactions:closure,bailoutandtake-over.Thissubsectionstudies
theeffectivenessofthesepoliciesindealingwiththeTMTF.
Thecollectivefailureofmanybankshavebeenanalyzedinthepresenceofregulatory
actionswhichfocusonindividualbanks.Theseregulatorysystemshavebeenlimitedly
4.4.REGULATINGSYSTEMICRISK
79
effectiveastheycouldnotpreventsystemicfailures.Thissubsectionincludesasimilar
setupthattheregulatorypoliciesexistbutdonottargetsystemicrisks.Weseehow
bankstakeadvantageofitandinitiatewidespreadfailures.Tocomplementtheproblem
discussedinthelastsubsection,thefocusisontherisktakingbehaviorofbanksin
thispart.Further,thebanks’herdingonrisktakingcontributestothesecondtypeof
externalityinalargecrisis.
Considertwoequal-sizedbanksAandBoperatingeachfortwoperiods.Eachperiod
hasbasicallythesetupofsection4.2.Butitisadaptedforlettingtheregulatorintothe
modelandafewsimplifications.Theregulatormayinterveneattimet=1.Theonly
sourceoffundforeachbankis1unitofdepositperperiod.Depositsaredebtcontracts
withmaturityofoneperiod.Thebanksbenefitfromfulldepositinsuranceonlyinthe
firstperiodwhichcostsad1,a>0,whered1isthedepositreturnatt=1.Thend2
denotesthedepositreturnatt=2.
Moralhazardofabankmanagerisdefinedasbefore.However,assumetheprobabilities
ofsuccessdonotchangebymoralhazard,i.e.P0=P1=P¯,buttheprobabilitydepends
ontheperiod.P¯1andP¯2standfortheprobabilityofsuccessindependentofwhomowns
thebank’sassetsatt=1,2,respectively.Further,ignoretheeffortcost,i.e.e=0.
ICconstraint(4.10)indicatesthatthebankerneedsaminimumshareofα=qQnotto
zard.hamoralcommitDefineliquidationassellingthebanktooutsiderswhogeneratesonlyR−δinthesuccess
state.AcharyaandYorulmazer(2007)assumeδ<qwhichmeansoutsiderscanmanage
thebankbetterthanthemoralhazardcasebutarenotasproductiveasthebankers.
Thisisinlinewiththeliteraturethatthemoralhazardrisk-takingisthemostsevere
caseintermsofsocialwelfareasitsoutcomeistheleast.
Thebankschoosetheirinterbankcorrelation,ρ∈{0,1}whichreferstothecorrelation
oftheirrespectivereturns.Whereasρ=0,thetwobanksbelongtotwodifferent
industries,andρ=1meansthattheychoosethesameindustry.HavingtwobanksA
andBintheeconomy,4possiblestatesattimet=1aregiven:SS,SF,FS,FF,
whileSandFrecallingsuccessandfailureofbankAandB,respectively.Beinginthe
sameindustrythejointprobabilitiesofthe4casesare,P¯1,0,0,1−P¯1.However,ifthe
banksareindependent(twodifferentindustries)thenthejointprobabilityofeachstate
isgivenbymultiplyingtheprobabilitiesofthetwooutcomes.
Toshowthatsurvivingbankwillalwaysbuythefailedbank,takeintoaccountfollowing
assumptions:(i)withoutlossofgenerality,bankAhasthebargainingpowertooffer
tobuybankB,(ii)bankAwillaccesstodepositorsofbankBafterpurchase,and(iii)
depositinsuranceiscostlytotheregulatorwhenthereisabankfailure.Thesurviving
bank,Awillalwaysbuythefailedbankinaprice,ψ=P¯2(R−δ)−1equaltowhat
outsidersatmostwouldpayinstatesSF.Thesurvivingbank’sexpectedprofitfrom
theinvestmentinassetsofthefailedbankwillbeP¯2R−1.Therefore,itpurchasesthe
80
CHAPTER4.THETHEORIESOFBANKREGULATION
failedbankandreceivesthediscount(P¯2δ).Thisresolutionpolicyisoptimalalsoforthe
regulator.Themisallocationcostiszero,comparingtothemisallocationcostofselling
totheoutsiders,P¯2δ.Thefiscalcostfortheregulatorisa(d1−ψ)inbothcases.The
bank’sbailoutpolicyincludesnomisallocationcostbutfiscalcostad1.
InthisuniquesubgameperfectequilibriumtheregulatorneverintervenesinstateSS.
InstateFF,ifbothbanksaresoldtooutsiders,theregulator’sobjectivefunctionis
E(V2L)=2[P¯2(R−δ)−1]−a(2d1−2ψ),(4.28)
andifbotharebailedout,ittakesthevalue
E(V2B)=2(P¯2R−1)−a(2d1),(4.29)
ofcourseitisalreadyassumedthatthebank’smanagerhasaminimumshareofαin
eachbailedoutbank.Bailingoutonebankandliquidatingtheotherone,theobjective
functiontakesavaluebetweenE(V2L)andE(V2B).Astwobanksaretakensymmetri-
cally,theregulatortakesthesameactiontowardseitherofthem.Hence,bothbanks
areliquidatedifE(V2L)≥E(V2B)whichgivesδ≤δ∗,whereδ∗=aP(¯2P¯2(1+R−a)1).Otherwise,
theregulatorbailsthemoutandtakesashareυineachbank’sequityυ<(1−α).
Knowingtheregulator’sstrategy,wefindthebanks’decisionontheinterbankcorrela-
tion,whichistheirinvestmentproblemofdate0.Notethatabank’sfirstperiodprofit
P¯1R−d1isindependentofρ.Therefore,itsexpectedprofitoftwoperiods,
E(π1)+E(π2(ρ))(4.30)
isoptimizedwithrespecttoρasE(π2(ρ))maximizes.Whentwobanksinvestinthe
17,industrysameE(π2(1))=P¯1E(π2ss)+(1−P¯1)E(π2ff).(4.31)
tiate,differentheyifButE(π2(0))=P¯12E(π2ss)+P¯1(1−P¯1)E(π2sf(0))+(1−P¯1)2E(π2ff),(4.32)
whereE(π2sf(0))=E(π2ss)+P¯2δ,aswediscussedbeforethatthesurvivingbankreceives
adiscountP¯2δbybuyingthefailedbankinstateSF.Thechoiceofinterbankcorrelation
isdeterminedbythetradeoffbetweenthisdiscountandthesubsidyatbeingbailedout
,FFstateinE(π2(1))−E(π2(0))=P¯1(1−P¯1)[E(π2ff(0))−P¯1δ].(4.33)
17Theoutcomesareonlysuccessforbothorfailureofbothbanks.
(4.33)
4.4.REGULATINGSYSTEMICRISK
81
Iftheregulatorliquidatestwobanksatt=1,i.e.δ≤δ∗,bankschoosethehighestlevel
ofcorrelationatt=0.Otherwise,ifbanksarebailedout,E(π2ff)=(1−υ)(P¯2R−1)
exceedssubsidy18P¯2δifandonlyif,
¯δP2∗υ<υ=1−(P¯2R−1).(4.34)
Thus,ifυ∗>1−α,forabailoutstrategyofυ<1−αbankstakesρ=1.Butif
υ∗≤1−α,theyherdwheretheregulatortakesverylowshareυ<υ∗.Tomakebanks
differentiateunderabailoutpolicytheregulatorhastotakeυ∈[υ∗,1−α].
However,theex-anteoptimalpolicymaydifferfromtheregulator’sex-postpolicies.
ThelossesinstateFFinspiretheregulatortoimplementclosurepoliciesthatmini-
mizesex-antetheprobabilityofthisstate.Itmeansthattheexpectedtotal19outputof
thebankingsectorismaximizedwhenbanksinvestindifferentindustries.Incase
δ≤δ∗,obviouslytheex-anteandex-postpoliciesarethesame.Inthemorecrucial
caseofδ>δ∗,theregulatorneedstotakeadilutionυ>υ∗topreventherding.Where
υ∗<1−α,theregulatorcantakeυ=υ∗toprovideincentiveforbankstodeviate
andstillcontinuewithoutmoralhazard.Nevertheless,themostconsiderablecaseis
whenυ∗>1−α.AcharyaandYorulmazer(2007)findasetofparametersunderwhich
ex-anteitisoptimaltoliquidatebothbanks,asδ<qandtheliquidationcostsare
smallerthantheagencycost.Butdiscussedabovethatex-postitisoptimaltobailout
bothbanks,sincetheregulatorisex-postonlymaximizingtheprofitsatstateFF.The
regulatorex-anteobjectstoreducethelikelihoodofjoint-failure.Shemaygiveupsome
ofitsprofitandimposesatougherliquiditypolicyinordertoincentivelesscorrelation
betweenbanks.Hence,stateFFincludestimeinconsistencyproblemforlargeδ.
AcharyaandYorulmazer(2007)comparetoo-big-to-failandtoo-many-to-fail,assuming
twobanksasymmetricintheirsizes.WithoutlossofgeneralityletbankAbethelarger
bankwhichtakesdepositmorethan1unit.Theresultchangesduetotheassumption
thatthelargebankhasenoughcapitaltobuythesmallbankbutthesmallbankdoes
nothaveenoughfundtoacquirethelargebank’sassets.Therefore,onlyinstateSFthe
survivinglargebankbuysthesmallbank.InstateFS,ifδ>δ∗theregulatorbailsout
thefailedlargebank,sinceliquidatingtooutsidersisamisallocation.Otherwise,where
δ≤δ∗theregulatorliquidatesanyfailedbanktooutsiders.Intheirpaper,Acharyaand
Yorulmazer(2007)showthatstateFFissimilartothesymmetriccase,unlessforlarge
δ.Forδ≤δ∗,thesmallbankisactuallyindifferentbetweenhighandlowcorrelation,as
itcannottakeovertheassetsoftheotherbank.Butthebigbankdifferentiatesitself,
asitgetsalwaysanextrabenefitinstateSFthanstateSS.Inthecontrary,forδ>δ∗,
18Thesubsidyofdifferentiating,likelysurvivingandbuyingtheotherbankinstateSF.
19Itcanbeverifiedbycomputingthetotalexpectedoutputgeneratedbybanks,netofliquidation
and/orbailoutpolicy,inasimilarapproachasabove.
82
CHAPTER4.THETHEORIESOFBANKREGULATION
sincethesmallbankhasnoopportunitytoaccessthefailedlargebank’sassets,only
itsbailoutsubsidyatstateFFmatters.Thebailoutsubsidyforthelargebankdoes
notbankfails.increaseThiswhengivestheincensmalltivesbanktofailsthetosmallo,bankwhereastoitherddoeswithforthethebigsmallbank.bankifThus,thethebig
inter-bankcorrelationobtainsbymixedstrategiesandthereisnoequilibriuminpure
andstrategyGupta.(1987)Accordinglyand,theBarronTMTandFValevmostly(2000)affectonsmallUSbanks.banks’lendingEmpiricalbehwaviororksofpriorJainto
thedebtcrisisof1982-1984supporttheresults.
4.5Macro-PrudentialRegulationPolicies
Thissectionaddressesprudentialregulationpoliciesdealingwiththesystemicrisk.The
focusisonthethreesevercasesofmoralhazard:1)TMTF2)Toomuchrelatedtofail
and3)TBTF.Thefirstandthethirdcaseshavebeenbrieflymentionedintheprevious
thesesectionsissues.andthisThecasesectionoftoconcenomuctrateshonrelatedrathertoofailrefersmacro-prudentoatialhighlyapproacinhestoterconnectedwards
pbankingoliciesagainstsystemtheliabletodistributedcontagionrisk.andEffectivitdistributingyofeacthehrisk.regulatoryNextstrategysubsectionsisintroanalyzedduce
withrespecttothesourceofmoralhazard.
TMTFwithDealing4.5.1
AcharyaandYorulmazer(2008)concentratedirectlyonthetime-inconsistencyproblem
ascreateofincenTMTF.tivesTheyfortakshowingthatlessrisk.grantingWiththesurvivingsetupofbanksActoharytakaeandoverYtheorulmazerfailed(2007)banks
fornbanksinaneconomy,thissubsectionanalyzestherewardingpolicy.
Whentoomanybanksareindefault,thesurvivingbanksmaynothaveenoughliquidity
toacquirelargeamountofassetsofallthefailedones.Therefore,thepriceofassets
fallsinthemarketsuchthatoutsidersofthebankingsectorcanpurchasesomeofthe
orderfailedtobbanks’eableassets.topurcEvenhaseifallthethesurvivingfailedbanks’bankwanassets,ttotheyissuewillequitneedytotoraisecompfundensatein
theturnoutsidersreducestheastheirpriceforcompassetsetitorsofinthethesurvivingmarketbanforksbfailedecausebanks’theyhaassets.vetoThissellwillequitiny
atlowaerthediscounmarkt.Hence,et-clearingtheypricewillstillandnottheaccesshighertheenoughtotalfund.misalloThecationmorecost.failed20banks,the
where20Theδistotalthelossmisalloincationreturncostgeneratedequalsbythenumoutsiders.beroffailurestimesaconstantmisallocationcostP¯2δ,
4.5.MACRO-PRUDENTIALREGULATIONPOLICIES
83
Liquidatingtooutsidersisnotex-postoptimalinawelfareanalysisperspective.How-
ever,bailingoutfailedbanksincursafiscalcostintheworkofAcharyaandYorulmazer
(2008).Thus,theregulatorex-postoptimallybailsoutsomeofthefailedbanksaslong
asthemarginalcostofbailoutislessthanthemisallocationcost.Alternatively,sup-
posethattheregulatorprovidessufficientliquiditytosurvivingbankstobuythesame
optimalnumberoffailedbanks.Fromthepointofviewofsocialwelfare,theregulator
hastopaythesameamountofinsurancecostandthetotalmisallocationcostisnot
morethanbefore,assurvivingbanksaretheefficientusers.Therefore,theex-postsocial
welfarecostwiththealternativepolicyisasequalasthedirectbailoutpolicy.
Ex-antetheregulatorwishestoavoidtoomanyfailures.Thetimeinconsistencyproblem
arisesasshewantsex-antetoavoidherdingamongbanksbythreatofliquidatingto
outsidersbuthastoex-postbailoutthefailedbanks.Tomitigateherding,theregulator
takhazard.es21dilutionTheinsametheresultequityoffollothewsbawheniledtheoutrequbanksireddepliquidendenittyisonprothevidedseverittoyofmsurvivingoral
banks.Ytheet,theoutsidersendohawmenve,tothefpriceoutsidersandtheinfluencesnumbtheerofherdingfailedincenbankstives.theyThetogetherlessendowithwmenthet
survivingbankscanacquiredecreases.Theregulatorhastoprovideliquidityforeven
surplussmallernofumtakbereingofoverfailures.failedThisbanksincreasesraises.Inbanks’turn,incenthetivesregulatortodifferencantaktiateeaassmtheiraller
dilutiontocontrolherdingoveralargerrangeofα.
Asurvivingbankusesitsfirstperiodprofit,R−d1,topurchasefailedbanks.Whenthis
resource,availabletoeachsurvivingbankatdate1,exceedsthemaximumpriceoutsiders
wouldpayforpurchasingafailedbank,ψ,thebankcanpurchaselargeramountoffailed
banks’assets.Asurvivingbankbenefitsmorefromtheliquidityprovisionpolicy,asits
purchasesurplusoutweighsthesubsidyofbailoutpolicy.
Thisway,theregulatorencouragesbankstodifferentiatethroughratherrelaxliquida-
intionterbankstrategycorr.elationComparingbyatosmallerex-poststakeoptimalinthebailoutbailedpoutolicy,banks.shecanToimplemesummarize,ntlowtheer
alsoliquiditydominatesprovisionthenotbailoutonlypolicydiminishesfromantheex-anlikteelihoostandpdofoint.aggregatebankingcrisisbut
4.5.2TooRelatedToFailandCapitalAdequacy
Theexternalityfromonebank’sinvestmenttootherbanks’,broadensprudentialbanking
regulationstudiestowardsamultiple-bankdesign.Oneextensionapproachistotake
intoaccountbanks’correlationintheexistingregulationstrategies.Thissubsection
21Asdiscussedinsection4.2,thechoiceofwithrespectto∗andαdependsontherelationbetween
.qandδ
84
CHAPTER4.THETHEORIESOFBANKREGULATION
describestwoproposalswhichconcerncapitaladequacy.Asdiscussedintheprevious
sections,theex-postoptimalclosurepoliciessufferfromtime-inconsistencyproblem.
Thisdirectsustoex-anteoptimaldesigns.Capitalrequirementisthenthecoreofsuch
olicies.pregulatoryAcharya(2009)studytheexternalitiesofabankfailureonsurvivingbanks.Inatwo
bankssetupsimilartoAcharyaandYorulmazer(2007),ifbankBfails,afractionς<1of
itsdepositorsmigratetobankA.Sincetheoverallinvestmentintheeconomyreduces,
thereturnonthesafeassetraises.Thisincreasesthecostofdepositsonsurviving
banks,becausethereturntodepositorsequalsthereturntothesafeassetinequilibrium
(otherwise,therewouldbenoinvestmentorshort-sellonit.).
Besidethe”recessionaryspill-over”,thereisapositiveexternality.Havingmoredeposi-
tors,bankAcanexpandandacquirealsothehumancapitalofbankB.Infact,itscostof
investmentdecreasestoσpercent,andsodoestheinvestmentintheriskyasset.Thus,
thetotaleffectoftwo(negativeandpositive)externalitiesmakesthedifferencebetween
theprofitinstateSFandtheprofitinstateSS,i.e.E(πsf)−E(πss).Thisvaluewhich
determinesthebank’schoiceoninterbankcorrelation,isbydefinitiondecreasinginς
butincreasinginσ.Foranyσ,athresholdς∗(σ)canbefoundbelowwhichthetotal
externalityisnegativeandbankshavenoincentivetodifferentiate.Thissituationcan
alsoholdforsufficientlyhighinvestmentcostσ∗(ς),givenς.Weendupincollective
riskshifting,i.e.highρ,forlargeσand/orsmallς,andlowcorrelationotherwise.
Asdiscussedinsection4.2,individualbankswithlowchartervalue(wealth)takeshigher
risk.Nowthesystemicriskshiftingduetotheircorrelationisextratotheindividual
failurerisk.Bydefinition,thelossofjointfailureislargerthananindividualbankfailure.
Thisprovokestheneedforregulatoryactionsagainstbothsystemicandindividual
risk-takinginAcharya(2009).Consequently,theregulator’sclosurepolicies(including
liquidityprovision)shouldexhibitlessforbearanceinthejointfailure.
Regardingprudentialtreatmentstopenalizecollectiverisk-takingandTMTFphenom-
ena,ex-antemechanismssuchascapitalrequirementcanbeeffectivelyimproved.Since,
thecollectiverisk-shiftingisbasedonexternalities,amyopiccapitaladequacyregula-
tion,independentofρ,canatbestmitigateindividualrisk-shifting.
Acharya(2009)showsthatacapitaladequacyregulation,increasinginthecorrelation
ofbanks’portfolioandindividualportfoliorisk,moderatesbanks’systemicrisk-shifting.
ThenegativeexternalityinstateSFincentivesbankstoincreasetheprobabilityofstate
SSbytakinghighcorrelation.However,thecapitaladequacywhichdependsonthe
endogenousnegativeexternalityinducesthecostofcapitalinthatcase.Hence,thehigh
costofcapitalcounteractsthenegativeexternality.Accordingly,theproposalamends
themyopiccapitalrequirementstrategy.Itsuggeststhatbanksshouldholdmorecapital
andtakeintoaccountthegeneralriskineconomyinadditiontotheirspecificrisk.
4.5.MACRO-PRUDENTIALREGULATIONPOLICIES
85
Thenextproposalcontainsratherpracticalviewtothecapitaladequacystrategies.
Themainintuitionisagainaboutconsideringeachbank’scontributiontoasystemic
crisis.Thesystemicriskregulatorcanbecomparedtoaseniormanagerwhowantsto
preventfinancialdistressinafirm.Sheappliesriskmanagementtechnicstomeasure
eachdivision’scontributiontothetotalriskofthefirm.Theequityisassumedapublic
goodtotheentirefirm.Therefore,eachunitmustbechargedaccordingtotheequity
valueusedtosupportit.Acharyaetal.(2009)implysimilarapproachforregulating
crisisinthebankingsystem.22Assystemicriskisdefinedtooccurendogenously,each
measured.istributionconbank’sCurrentregulationpoliciesshouldbeadjustedtoconsidersystemicriskinthebanking
system.Capitaladequacyisthusasanintuitiveregulatoryinstrumentimposedto
dependoneachbank’smeasureofthesystemicriskcontribution.Forinstance,theBasel
IIcapitalrequirementmultipliedbythismeasuredsystemicfactorisanimprovement,
consistenttothediscussionabove.TheproposalisinfactanintroductiontotheBasel
IIIregulatoryaccords.However,itcanbeenforcedefficientlyundercircumstancesthat
limitthecyclicalityprobleminthesystemicriskmeasurementandtheissueoffake
erage.levindecrease
4.5.3TBTFandSystemicTaxing
Sinceabigcomplexbankcannotbeliquidated,anaturalprudentialstrategyistotaxits
activitiesthatbringnegativeexternalitieswiththeintuitiontodiscouragethebehavior
leadingtosystemicrisk.Further,theaccumulatedtaxthencouldbeusedtofundthe
lossesofthesystemiccrisis.However,fromsection4.2weknowthatfortaxingbeing
effectiveagainstrisk-takingaproperdesignisnecessary.FreixasandRochet(2010)plan
asystemictaxtodealwiththeextremeandrareeventoflargelossesinaSystemically
ImportantFinancialInstitution(SIFI).
IncaseofaSIFIfailure,apublicsupervisoryinterventionisneededsincenoprivate
insurancecancoverthelossesC,neithertheshareholderswanttorecapitalizeastheir
expectedNPVisnegative.Inamulti-periodsetup,takeintoaccountthemanager’s
moralhazarddiscussedinsection4.2.TheSIFIgeneratesafixedpositivecashflowµ
ineachperiod.Butitmayfailwithaverysmallprobabilityτwhichincreasesbydτ
becauseofthemanager’smoralhazard.Anothermainfrictionbetweenthemanager
andshareholdersisthatsheismoreimpatientashisdiscountfactorξMissmallerthan
.ξshareholders’Existenceofastrongandindependentsystemicriskauthoritywhichhasthepowerto
restructurethebankandtheownershipisnecessaryinFreixasandRochet(2010),to
(2009)22Adetaileddescribefollodiscussionwingonmethotheds:appvliedriskalue-at-riskmanagemenandexptectedmethodsishortfall,sbeyondstressthistestssurvandey.Acaggregateharyaetriskal.
risk.systemicpricingandscenarios,
86
CHAPTER4.THETHEORIESOFBANKREGULATION
establishex-anteoptimalregulation.Theauthorityhastobearacostforrestructuring
thebankΓ.Asdiscussedinsection4.2,toavoidmoralhazard,themanager’ssalary
sheshouldreceivdepesendabononushisspattheerformanceendofandeachsatisfysuccessfulincentivpeeriodcompatibilitthatyconstraint.Hence,
(1−τ)(s+ξMω)≤(1−τ−dτ)(s+ξMω)+Q.(4.35)
Still,sheshouldbeofferedaonetimepaymentGwhenshesignsthecontract.Thisfills
thegapbetweenhisreservedutilityU(histrainingcost)andtheexpectedcontinuation
payoffω,i.e.G=U−ω,whereω=(1−τ)(s+ξM).
Thesystemicriskauthorityexpropriatestheshareholdersafterthecrisis.Theregulator
sellsthebanktonewshareholders,naturallyinapriceequaltotheirexpectedbenefit.
Themanager,pricei.e.istheΠ−expGectedwherevΠalue=ofµ−theT+bank(1π−τnet)(−ofs+theΠ).one-timeTheofferregulatorytothecostnewof
expectedrestructuringcostforreducesthebregulatorecauseofinsellingcaseofthecrisis,bank.T=τHence,[C+theξ(Γ−systemic(Π−Gtax))].equaltothe
ThecleverproposalofFreixasandRochet(2010)istoconsidertheregulatoroffering
agraceperiodtothenewmanagerafterthecrisis.Itmeansthatifimmediatelyaf-
terarestructuringthebankfailsthemanagerwillnotbefiredandtheshareholders
arenotexpropriated,butthebankisbailedout.Forthemanagernottotakemoral
hazardinthisperiodtheminimumbonusoftheperiodisQ/(dτ)whichislargerthan
ωfrom(4.31).Inreturn,heronetimepaymentreducesbecauseofbiggerbonusin
thegraceperiod.Afterthegraceperiod,everythingisbacktothecontractmentioned
ofabove.restructurinNevgertheless,(immediatelyguaranteeingafteragracepreviousperiodisrestructuring)sociallyξ(bUe+neficialΓ)isiffhigherthetotalthancostthe
∗∗costminimofumloadingcontintheuationcompsalaryensationfromofthe(4.35).Inmanagerother(ξw−ξords,M)ωun,derwheresuchωiscondittheionthemanager’sone
periodgracecontractissociallymorebeneficial.
Tofindtheoptimalcontract,FreixasandRochet(2010)controlfortheoptimalprobabil-
ityofthebankbeingrestructured.Furthermore,thequestioniswhetherthemanager’s
paymentcontractisoptimalwithrespecttoherperformance.Theregulatoroptimizes
thetotalsocialsurplusofthebank.Thoughnomanagerialpaymentincaseofcrisis
minimizesthemanagerialrisk-takingincentives,acrisisimpliesrestructuringthebank
whichiscostlytothesystemicriskauthority.Thetrade-offbringsthesolutiontothe
Freixasproblem,andasRothechetsuffic(2010)ientsolverequirementhetsrecursivforehavingdynamicagracepprogrammingeriodisproblemexplainedtoabjustifyove.
wtheasnooptimalitsupyervisoryoftheofconthetractregulator,withonethegracenewperiod.shareholdersTheinwterestingouldprefuseointtoisthatcompifensatethere
thenewmanager.Therobustnessoftheresultisalsoverifiedforlargerτ.
4.6.REGULATORYPOLICIESINTHERECENTCRISIS
4.5.4Market-BasedSystemandOtherAlternatives
87
Abovementionedmethodsmaketheregulatorresponsibleformeasuringrisksandimple-
mentationofresolutionpolicies.Alternatively,aninsuranceagainstonlysystemicpart
oftheriskwouldbeamarket-basedcomplementarysystem.Theinsurermustcompute
theriskandincaseofcrisiscanpaypartoflossestothefinancialstabilityregulator,
institute.thetodirectlynotAsAcharyaetal.(2009)discuss,tohandlethecrisisamonginsurancesystem,the
theinsurerslenderonlyoflastprovideresort.covHoeragewevforer,athesmallpinsuranceercentofcompanieslosses.wTheouldregulatorinspecthasthetostillsystemicbe
riskthanofuneaderchfixedbankrecarefullygulatoryandfeesorregularlycapitalsuchrequirementhatts.banksThishavweaylessthebincenanktivweouldtogamelimit
itssystemicriskandprovidemoretransparencytodecreasetheinsurancepremia.The
insurer’sregulator.pricingNoteprothatvidesthealsoinsurancemoresysteminformationcanbeforcomthebinedpublicandandimptheosedfinancialtogetherstabilitwithy
thesystemic-risk-basedcapitaladequacyortaxingpolicies.Therefore,apublic-private
systemwouldworkmoreeffectivelybothinexaminingthesystemicriskandtheninthe
t.enevcrisisrare
4.6RegulatoryPoliciesintheRecentCrisis
Aftersurveyingtheregulatorypolicies,itistimetoinvestigatewhathavebeensofar
doneinthepastcrisis.ThissectionpresentstheUSregulatorydataonbankand
financialinstitutionsfailures.Thesamplestartsfrom1934butthemainfocusison
therecentcrisesof2007-2009anditscomparisontothepast.Thesourceofdatais
FDIC’sFailuresandAssistanceTransactionsdatabase.23Unfortunately,detaileddata
onbailoutarenotavailablebuttherearedataaboutotherresolutions.
Theresolutiontransactionsareinthreemaincategories:1)assistanceinwhichinsti-
tution’schartervaluesurvives,2)failurewithterminationofthechartervalue,and3)
payout,wheretheinsurerpaysthedepositorsdirectlyandplaceassetsintheliquidat-
ingreceivership.Assistancetransactionsincludetransactionswhereahealthyinstitu-
tionacquirestheentirebridgebank-typeentitybutcertainotherassetsweremoved
toliquidatingreceivership,oropenbankassistancetransactionsunderasystemicrisk
determination.InabridgebanktransactiontheFDICitselfactstemporarilyastheac-
quirer.Itprovidesuninterruptedservicetobankcustomerswhilehavingsufficienttime
tomarkettheinstitution.Reprivatizationasmanagementtakeoverwithorwithoutas-
sistanceattakeover,followedbyasale,isveryrareinthedata.Thesecondcategory
containsalltypesof”PurchaseandAssumption”(P&A)agreements.Intheseresolution
23Thedataforyear2010isuptoAugust,20.
88
CHAPTER4.THETHEORIESOFBANKREGULATION
transactionsthehealthyinstitutionpurchasessomeorallofassetsofafailedinstitution
andassumessomeoralloftheliabilities,includingallinsureddeposits.24
Figures4.1to4.4shownumberofalltransactionsofthethreecategoriesinfourtime
intervals.Figure4.5putsthemalltogetherinordertomakecomparisonpossible.The
secondcategorytransactionsareknownas”failure,merger”inthefigures.Thetrend
ofaveragetotaldepositsinfailure(categorytwoandthree)andassistancetransactions
provideinformationonvolumes.Inallyearsfrom1934to1979,thetotaldeposits
underassistancesumsuptoabout6$billion.Compareitwithyearsafter.Inthe
80stheaveragetotaldepositunderassistanceismuchhigherthanunderfailures.Itis
increasingandthepeakis1.5$billionin1989.Thisissowhilethenumberofassistance
isalwaysverysmall.Itmeansthatmostlylargebankshavebeenunderassistance.Huge
numberoffailuresisseeninthe80sthatisreversedinthe90s.Thetrendofsystemic
failureisdecreasinginthe90sandsodothetrendofaveragetotaldeposits.However,a
relativelylargervolumeofdepositswereunderfailuretransactionthanassistance.Since
2000therewasnotmuchproblemsinthebankingsystemuntil2008and2009.Though
thenumberoffailuresandassistanceisnotaslargeasthe80s,theaveragetotaldeposits
isenormous.Withlownumberofassistancetransactions,uptoabout6$and14$billion
arespenttoassisttotaldepositsperbankin2008and2009,respectively.Notethat
the7$billionbailouttothefinancialsystemoftheUSisextratothesetransactions.
Theimportantroleofbanksaleisobservable.However,thesystemicshocksweresuch
extremethattheyaremostlycoveredbyhugecostforthegovernment,i.e.theregulatory
.yauthorit
Conclusion4.7
Thispapersurveysthedevelopmentofbankingregulationtowardssystemicriskregu-
lationintherecentyears.Regulatingasinglebankinnormaltimeshavebeenwidely
studied.Regulationstrategiesagainstabank’srisk-takingandresolutionpoliciesincase
ofafailurearewelloptimized.However,theyhavebeenlimitedtoindividualbanks’
problems.Preventingorresolvingasystemiccrisisrequiresdifferentpolicies.Ex-antepoliciessuch
ascapitaladequacy,taxingand/ordepositinsuranceshouldadjustforthispurpose.De-
pendenceoftheadequatecapitalrationotonlyoneachbank’sriskbutalsoonbanks’
correlationwoulddecreasebanks’herdinginrisk-taking.Computingeachbank’scontri-
butiontothesystemicriskinaproperrisk-managementmethod,thecapitaladequacy
orinsurancepremiumshoulddependonthismeasurementtoo.Systemictaxingfora
substantiallyimportantinstituteinaneconomywoulddiminishtheriskiftheregulator
isstrongenoughtoexpropriatetheownership.Taxingandpartialinsurancecanalso
24AbridgebanktransactionisalsoatypeofP&A.
4.7.ONCLUSIONC89
providefundingforthelosses.Privateinsurancecompanieswouldalsomonitorbanks’
fromactivitiestramnsmittedorecloselyloss,anthedpricepartialpremiainsurancemoregivcarefentoully.banksToprotectshouldtheonlycovinsuranceerafrasystemction
risk.systemictheirof
Ex-postcrisisresolutionsshouldalsobeex-anteoptimal.Sinceatacrisis,assetliquida-
tionisnotex-postoptimalinmajorityoffailures,forbearancepoliciesshouldencourage
risk-reduction.Inotherwords,directbailoutwouldhighlyincreasemoralhazardand
mustbeprohibited.Researchesproposetakeoverofafailedbankbyahealthyinsti-
tuteshouldbeallowedandalsogranted.Itmeansthat,theregulatorshouldprovide
powliquiditersytohealthaysurvivbanksalinofvolthevescrisistheforsamepurcsocialhasingcostasfailedadirectinstitutes.bailout,Thebutpolicyhasthethatgreatem-
advantagethatreducescollectiverisk-takingamongbanks.
Still,thereismuchspaceforfurtherdevelopmentofmacro-prudentialregulation.Fur-
therresearchcouldforinstanceconsidertheinterbankrelation.Atfailureofsome
avbanks,oidhowtransmission?couldtheirHowconnectionshouldthistoinotherterconnectionpartsofbefinancialex-antesystemoptbimallyecontrolledregulated?to
Besideopenquestionsregardinginterbankrelations,implementationofexistingpropos-
palsolicyisorequallycombiimpnationortant.ofpTheoliciesdepracticalpendswayonthethesupeconomervisoryyandauthoritalsoylegalshouldsystemimsp.oseThisa
providesbroadareaofresearchinbothappliedandtheoreticaltopics.
90
Figures
CHAPTER4.THETHEORIESFOBANKFigure4.1.USBankResolutions1934-1979.
Figure4.2.USBankResolutionsinthe80s.
TIONREGULAAssistanceTransactionsinclude:A/Atransactionswhereassistancewasprovidedtothe
acquirerwhopurchasedtheentireinstitution,orwhereassistancewasprovidedundera
systemicriskdetermination;andtheinstitution’schartersurvived.
4.7.FIGURESFigure
4.3.
4.4.Figure
US
Bank
Resolutions
in
the
90s.
2000.sinceResolutionsBankUS
91
AssistanceTransactionsinclude:A/Atransactionswhereassistancewasprovidedtothe
acquirerwhopurchasedtheentireinstitution,orwhereassistancewasprovidedundera
systemicriskdetermination;andtheinstitution’schartersurvived.
92
Figure
CHAPTER4.5.
US
4.Bank
THETHEORIESResolutions
FOBANK1980-August
0201
TIONREGULA
yBibliograph
Acharya,V.andYorulmazer,T.(2008).Cashinthemarketpricingandoptimalreso-
lutionofbankfailures.TheReviewofFinancialStudies,21:2705–2742.
Acharya,V.V.(2009).Atheoryofsystemicriskanddesignofprudentialbankregula-
tion.JournalofFinancialStability,5(3):224–255.
AcRharyisk,a,cV.hapterV.,13,L.H.pagesPederson,283–303.T.P.,NewandYorkRicUnivhardson,ersityM.Stern(2009).SchoRoleofgulatingBusiness.Systemic
Acharya,V.V.andYorulmazer,T.(2007).Toomanytofail-ananalysisoftime-
inconsistencyinbankclosurepolicies.JournalofFinancialIntermediation,16:1–31.
Allen,F.andGale,D.(2000).Financialcontagion.JournalofPoliticalEconomy,
108(1):1–33.Mimeo,TheWhartonSchool,UniversityofPennsylvania.
Barron,J.andValev,N.(2000).Internationallendingbyu.s.banks.JournalofMoney,
CreditandBanking,32(3):357–381.
BaselCommittee(2001).OverviewoftheNewBaselCapitalAccord.Consultative
document,BCBS,Basel,Switzerland.
Bayraktar,E.andEgami,M.(2007).Ontheone-dimensionaloptiomalswitchingprob-
lem.http://www-personal.umich.edu/egami/switch.pdf.
Berlin,M.andMester,L.(1992).Debtcovenantsandrenegotiation.JournalofFinancial
Interme2:95–133.,diation
Besanking,o,andD.incenandtiveKanatas,compatibilitG.y(1996)..JournalBankofcapitalFinancialregulation:IntermeTimediationsc,onsistency5:160–83.,hedg-
Bhattacharya,S.,Boot,A.,andThakor,A.(1998).Theeconomicsofbankregulation.
JournalofMoney,CreditandBanking,30:745–770.
Bhattacharya,S.,Plank,M.,Strobl,G.,andZechner,J.(2006).Bankcapitalregulation
withrandomaudits.JournalofEconomicDynamics&Control,26:1301–1321.
93
94
BIBLIOGRAPHY
Boot,A.andGreenbaum,S.I.(1993).Bankregulation,reputation,andrents:Theory
andpolicyimplications.InMayer,C.andVives,X.,editors,CapitalMarketsand
FinancialIntermediation.CambridgeUniversityPress.
Boot,A.andThakor,A.(1993).Self-interestedbankregulation.TheAmericanEco-
83:206–212.,eviewRnomicBoot,A.andThakor,A.(2008).TheAcceleratingIntegrationofBanksandMarkets
anditsImplictionsforRegulation.TheOxfordHandbookofBanking.
Brekke,K.andOksendal,B.(1994).Optimalswitchinginaneconomicactivityunder
uncertainty.SIAMJournalofControlandOptimization,32:1021–1036.
Chan,Y.,S.I.,G.,andThakor,A.(1992).Isfairlypriceddepositinsurancepossible?
TheJournalofFinance,47:227–245.
Cordella,T.andYeyati,E.L.(2003).Bankbailouts:Moralhazardvs.valueeffect.
JournalofFinancialIntermediation,12:300–330.
Dahl,D.andSpivey,M.(1995).Promptcorrectiveactionandbankeffortstorecover
fromundercapitalization.JournalofBankingandFinance,19:225–243.
Dangl,T.andLehar,A.(2004).Value-at-riskvs.buildingblockregulationinbanking.
JournalofFinancialIntermediation,13:96–131.
Decamps,J.andDjembissi,B.(2005).Revisitingtheassetsubstitutioneffectina
contingent-claimanalysissetting.RealOptions,9thAnnualInternationalConference,
June22-25.Paris,Decamps,J.,Roche,J.,andRoger,B.(2004).Thethreepillarsofbaselii:Optimizing
themix.JournalofFinancialIntermediation,13:132–155.
Diamond,D.(1984).Financialintermediationanddelegatedmonitoring.Reviewof
51:393–414.,StudiesonomicEcDiamond,D.W.andDybvig,P.H.(1983).Bankruns,depositinsurance,andliquidity.
JournalofPoliticalEconomy,91:401–19.
Dixit,A.andPindyck,R.S.(1994).InvestmentunderUncertainty.PrincetonUniversity
.JerseyNewPrinceton,Press,Erricson,J.(1997).Assetsubstitution,debtpricing,optimalleverageandmaturity,cred-
itriskincorporatesecuritiesandderivatives:valuationandoptimalcapitalstructure
choice.PhDthesis,StockholmSchoolofEconomics.
Fackler,P.(2004).Solvingoptimalswitchingmodels.Workingpaper,
http://www.samsi.info/200506/fmse/workinggroup/ci/switch.pdf.
BIBLIOGRAPHY
95
Freixas,X.(1999).Optimalbailoutpolicy,conditionalandconstructiveambiguity.
DiscussionpaperNo.237.LSEFinancialMarketsGroup.
Freixas,X.,Parigi,B.,andRochet,J.C.(2000).Systemicrisk,interbankrelation,and
liquidityprovisionbythecentralbank.JournalofMoney,CreditandBanking,32
(3):611–638.Freixas,X.andRochet,J.C.(2010).Tamingsifis.In3rdConferenceonFinancialInte-
grationandStability:SystemicRiskandIncentives;23-24.09.2010,ZEW,University
.MannheimofFries,S.,Mella-Barral,P.,andPerraudin,W.(1997).Optimalbankreorganizationand
thefairpricingofdepositguarantees.JournalofBankingandFinance,21:441–468.
Gennotte,G.andPyle,D.(1991).Capitalcontrolsandbankrisk.JournalofBanking
15:805–824.,eFinancandJain,A.andGupta,S.(1987).Someevidenceonherdingbehaviorofu.s.banks.Journal
ofMoney,CreditandBanking,19(1):78–89.
Jensen,M.andMeckling,W.(1976).Theoryofthefirm:Managerialbehavior,agency
costs,andownershipstructure.JournalofFinancialEconomics,4:305–360.
Jones,D.andKing,K.(1995).Theimplementationofpromptcorrectiveaction:An
assessment.JournalofBankingandFinance,19:491–510.
Leland,H.(1994).Corporatedebtvalue,bondcovenants,andoptimalcapitalstructure.
TheJournalofFinance,49:1213–1252.
Leland,H.andToft,K.(1996a).Optimalcapitalstructure,endogenousbankruptcy,
andthetermstructureofcreditspreads.TheJournalofFinance,51(3):987–1019.
Leland,H.andToft,K.(1996b).Optimalcapitalstructure,endogenousbankruptcy,
andthetermstructureofcreditspreads.TheJournalofFinance,51:987–1019.
Leland,H.E.(1998).Agencycosts,riskmanagement,andcapitalstructure.Working
er.apPMailath,G.andMester,L.(1994).Apositiveanalysisofbankclosure.Journalof
3:272–299.,diationIntermeFinancialMitchell,J.(1997).Strategiccreditopassivity,regulation,andbasel.Universityof
MichiganBusinessSchool,TheWilliamDavidsonInstitute,workingpaper.
Perotti,E.andSuarez,J.(2002).Lastbankstanding:Whatdoigainifyoufail?
EuropeanEconomicReview,46:1599–1622.
96
BIBLIOGRAPHYPeters,S.(1994).Whyaredemanddepositssequentialserviceconstrainedandinsured?
UniversityofConnecticut,workingpaper,1994.
Pham,H.(2005a).Onsomerecentaspectsofstochasticcontrolandtheirapplications.
ProbabilitySurveys,2:506–549.
Pham,H.(2005b).Onthesmooth-fitpropertyforone-dimentionaloptimalswitching
problem.forthcoming,SeminairedeProbabilites,Vol.XL.
Prescott,E.(2004).Auditingandbankcapitalregulation.FederalReserveBankof
RichmondEconomicQuarterly,90/4.
Repullo,R.andSuarez,J.(2004).Loanpricingunderbaselcapitalrequirements.Journal
ofFinancialIntermediation,13:496–521.
Rochet,J.andTirole,J.(1996).Interbanklendingandsystemicrisk.JournalofMoney,
CreditandBanking,28(4):733–62.
Stiglitz,J.E.andWeiss,A.(1981).Creditrationinginmarketswithimperfectinfor-
mation.TheAmericanEconomicReview,71:393–410.
Vath,V.L.andPham,H.(2007).Explicitsolutiontoanoptimalswitchingproblemin
thetwo-regimecase.SIAM,JournalonControlandOptimization,46:395–426.
enslaufLeb
10/2005
07/2003
09/2001
09/1997
06/1999
-
-
-
-
1101/20
0509/20
0406/20
0106/20
DoktorandenstudiumamCenterforDoctoralStudies
inEconomics(CDSE),Universit¨atMannheim
WissenschaftlerinamInstituteforInternational
eheranTStudies,Energy
MasterstudiumamInstituteforManagementand
eheranTStudies,Planing
BachelorstudiumanderTechnischesUniversit¨atSharif,
eheranT
AbituranderFarzaneganHighschoolinRasht
heEidesstattlic
arung¨Erkl
Hiermiterkl¨areich,dassichdieDissertation
andigselbstst¨
angefertigt
dun
alsderinihrangegebenenHilfsmittelnichtbedienthabe,insbesondere,
hmic
dass
anderer
an-aus
derenSchriftenEntlehnungen,soweitsieinderDissertationnichtausdr¨ucklichalssolche
gekennzeichnetundmitQuellenangaben
Mannheim,18.Januar2011
Maryam
Kazemi
Manesh
ersehenv
sind,
thnic
stattgefunden
en.hab
Un accès à la bibliothèque YouScribe est nécessaire pour lire intégralement cet ouvrage.
Découvrez nos offres adaptées à tous les besoins !