Etude théorique de surfaces d'énergie potentielle, de moment dipolaire et de polarizabilité des complexes de van der Waals CH4-N2 et C2H4-C2H4, Theoretical investigation of the potential energy, dipole moment and polarizability surfaces of the CH4 - N2 and C2H4 - C2H4 van der Waals complexes

-

Documents
206 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Sous la direction de Vincent Boudon, Victor Cherepanov, Natalia Zvereva-Loëte, Mikhail Buldakov
Thèse soutenue le 13 octobre 2010: RUSSIE - Université de Tomsk, Dijon
Dans cette thèse, des calculs ab initio et analytiques ont été effectués pour déterminer les surfaces d'énergie potentielle, de moment dipolaire et de polarisabilité des complexes de van der Waals faiblement liés CH4-N2 et C2H4-C2H4, pour une large gamme de distances intermoléculaires et de configurations, dans l’approximation des molécules en interaction rigides. Pour les calculs ab initio, la méthode CCSD(T), CCSD(T)-F12, ainsi que les méthodes moins couteuses MP2, MP2-F12, SAPT et DFT-SAPT ont été employées (pour toutes les méthodes,la base aug-cc-pVTZ a été utilisée). La correction BSSE a été prise en compte dans les calculs. Les calculs analytiques ont été réalisés dans le cadre de l'approximation classique aux grandes distances. Un modèle prenant en compte les effets d'échange dans la région des petits recouvrements des nuages électroniques des molécules en interaction a été suggéré pour décrire le moment dipolaire du complexe de van der Waals CH4-N2 sous une forme analytique, pour les grandes distances intermoléculaires incluant la région des puits de potentiel. Dans ce modèle, le moment dipolaire total est considéré comme résultant de la somme des contributions d'échange, d'induction et de dispersion.
-Complexes van der Waals
-Complexes CH4-N2
-Dimère d'éthylène
-Énergie potentielle
-Moment dipolaire
-Polarisabilité
In the present thesis both ab initio and analytical calculations were carried out for thepotential energy, dipole moment and polarizability surfaces of the weakly bound van der Waals complexes CH4-N2 and C2H4-C2H4 for a broad range of intermolecular separations and configurations in the approximation of the rigid interacting molecules. For ab initio calculations the CCSD(T), CCSD(T)-F12 and less computationally expensive methods such as MP2, MP2-F12, SAPT, DFT-SAPT were employed (for all methods the aug-cc-pVTZ basis set was used). The BSSE correction was taken into account during the calculations. The analytical calculations were performed in the framework of the classical long-range approximation. A model accounting the exchange effects in the range of small overlap of the electron shells of interacting molecules has been suggested to describe the dipole moment of the CH4-N2 van der Waals complexes in analytical form for large intermolecular separations including the range of potential wells. In this model the total dipole moment is considered to be the sum of exchange, induction and dispersion contributions.
Source: http://www.theses.fr/2010DIJOS063/document

Sujets

Informations

Publié par
Nombre de visites sur la page 53
Langue English
Signaler un problème

4 2 2 4 2 4
ourgSt21078adetedeUniversityeterTHESIS(ICB),presenytedRobbCNRS,yBourgogneYdeuliaSaKaluginaUnivtoobtainersit?theUnivDegreeLauvofPDOCTORProfessor,ofyuterevPHYSICSJauslinTheoreticalInstitutin9vBPestigationFranceofOpticstheLenina,pUnivotenCo-directortialBourgogneenergyMarquardt,dedipDaoleResearcmomenersit?tRefereeandAssistanpersit?olarizabilitVladimiryUnivsurfacesExaminatorofUnivthePresidenCHdeTomsk5209-Nv.andaryand870CCedexgogneomskHyBourSp-CAdeTHussiaUniversit?ersit?tBourgogneResearcVincenCNRS,BoudonvheranUnivderdeWCo-directoraalsertocomplexesProfessor,Directorsersit?ofStrasbthesisRefereeMikhailvidBuldakergnatohervUnivVictordeCherepanoaris-SudvPNataliaKr?gerZvterevUniva-Lode?teExaminatorVincenTtProfessor,Boudonersit?DefendedReimstheHans-Rudolf13thProfessor,ofersit?OctobBourgogneert2010CarnotbBourgogneeforeUMRtheCNRSjury:AVictorA.Cherepanovv,Professor,47TomskDijonStateUnivTersitStateyersitCo-director,NataliaandZvectroscoperev36a-Lov.?te634050ANRomskResearcRherEngineer,4 2 2 4 2 4
4 2
4 2
Aandwanalyticalthecalculationsinitiowerlaperecomplexescarriedeoutframewforeectsthemoleculesptheotenseparationstialdipenergydisp,AbstractdipclassicaloletingmomenoftshellsandsuggestedptolarizabilitanyforsurfacesofofmotheiswexceaklyKeywbderoundinvofanapproderdelWexcaalsthecomplexesoCHtheinitioin-NbabdescribandoleCtheothInHWbanalytical-CinthesistheHotentInfortheamomenbroadtorangesumofinductionpresenconeth:otenvdipaals,p2indimer,termolecularenergyseparationsmomenandycongurationserformedinthetheorkapprotheximationlong-rangeofximation.themorigidaccounintheteractinghangemolecules.inFrangeorsmallabvinitioofcalculationselectrontheofCCSD(T),teractingCCSD(T)-F12hasandeenlesstocomputationallyeexpdipensivmomeneofmethoCHds-NsucvhderasaalsMP2,inMP2-F12,formSAPT,largeDFT-SAPTtermolecularwincludingererangeemplopytialedells.(forthisalldelmethototaldsolethetaug-cc-pVTZconsideredbasisbsetthewofashange,used).andTheersionBSSEtributions.correctionordswabas,takanenWinCHto-Naccouncomplex,tyleneduringpthetialcalculations.,Theoleanalyticalt,calculationsolarizabilitw.erep4 2 2 4 2 4
4 2
4 2
distances.onincluantsugg?r?e?t?hange,eectu?sppaalsourtd?terminerleleslessurfaces?lectroniquesd'?nergieolairepanalytique,otenotentielle,tde,momenximationtprenandipdansolairetsetindelepvolarisabilit?R?sum?desgrandescomplexesdesdemovestandesderdispWWaalsdefaiblemenauxtmoli?senCHd'?cetr?gion-Nrecou-initionetmol?culesCaabourHtcalculscomplexe-CdesdesDansHuneth?se,our,inplaourdeuneDanslargelegammeolairedecommedistanceslaintributionscetteetanalytiquesLesabyl?ne,antielle,complexolaire,ter-dim?remol?culairespettdeolarizabilit?.congurations,cadredansl'approl'approclassiqueximationgrandesdesUnmol?culesd?leentincompteteractioneetsrigides.hangePlaourdeslesetitscalculsvremenabdesinitiouages,deslaenm?thoteractionde?t?CCSD(T),pCCSD(T)-F12,d?crireainsimomenquediplesdum?thodedesanmoinsWcouteusesCHMP2,-NMP2-F12,sousSAPTformeetpDFT-SAPTlesondistancesttermol?culaires?t?templor?gionypuits?esp(ptiel.ourcetoutesd?le,lesmomenm?thodipdes,totallaconsid?r?baser?sultanaug-cc-pVTZdeasomme?t?conutilis?e).d'?cLad'inductioncorrectiondeBSSEersion.amots-cl?s:?t?initioprisevendercompteaals,dansCHles-Ncalculs.,Lesd'?thcalculs?nergieanalytiquesotenonmomentdip?t?pr?alis?s3dans4
SKIFAascMicknoThewledgemenYtsDuringIts.amGENCI-[CCRheartilythethankfulfortoparticipationmUnivyhsuptheervisorserebdeothUnivfromICB.RussiaTandwFforrance,mnamelythis,BourgundyMikhailyBul-holarshipdakisoANR4v,repVictorusingCherepano2010-[i2010086316]),v,ersit?NataliaofZvorkerevoratorya-Lothankful?teScribanoandyVincendiscussions.talsoBoudon,Lowhoseactivencouragemenorganizationt,wguidancecourseandork,suppyortIfromortedtheFinitialbassytoPhDthewnalpartlevrenceljectenabled(ref:meumericaltoheredever-elopresourcesan(Granunderstanding(CenofdetheBourgogne)sub(Supject.omskIy).oerinmlabyofregardsIandtoblessingsohanntoandallonofGabardthosefruitfulwhoIsuppouldortedthankmehelin?teanhisyerespinectofduringytheork.completiontheofofthewproatject.ersitSpofecially,,wIsuppthankbmtheyrenchEmusbandscVforahestudenHakThisoborkyaanofforFhishpatience,prohelpCHand@TitansuppBLAN08-2_321467).ort.nIcalculationswortedouldwlikpeformedtoHPCthankfromtheT/CINES/IDRIS]labtoratoryCCUBdirector,treGillesCalculBertrand,l'UnivfordegivingandmeCYBERIAtheercomputerpTossibilitStateyersittow4 2
methots.List.of.tengures.7.List.of.tables.11.P.art.IIA.b.initioPmetho.ds.15.Chapter.1.Aendenb.initio.Metho.ds.16General1.1.Hartree-F.omomenc.k.appro.ximation..53.Chapter...............35.er)p.....Summary.........38.ximation.P.........41......16.1.2.Correlation..........I.W.tial...........1.6...................F.(h...........37................21.1.2.1.M?ller-Plessetartplong-rangeerturbationChaptertheory41.tial...................Dip...................4922y1.2.2.Coupled.Cluster.Theory............art.TheCon.an.complex.P.59.....................34.Finite-eld.d......25.1.2.3.Explicitly.Correlated.F12.Metho.ds................1.7.requency-dep.t.yp.olarizabilities..................27.1.2.41.8Symmetry-A.dapted.P.erturbation.Theory.(SAPT)...........................27.1.3PBasisIsetsClassical.appro.40.2.consideration.2.1.oten.energy.....................................2.2.ole.t......................30.1.4.Basis.Set.Sup.erp.osition.Error2.3(BSSE)olarizabilit.......................................P.I.I.CH.-N33v1.5derBasisaalsSet57Incompleteness3Erroroten(BSIE)energy.5.4 2
4 2
2 4 2 4
..5.1.......4.2.2.....tial...P.......ordinate.........Chapter...y.stable.86.....P...of.....Vibrational60.3.2104P.oten.tial.energy.surface..128.....135.system.t.....P.surface.........the.....5.3.in...................3.1.Co..60.3.3.P.otenotential.energy.of.the.mostdipstablemomenconguration........134.App.....ole.the.........5.y.olarizabilit....65.3.4.Analytical.represen.tation.of.the96inyteractionstablep.oten.tial.of.the.mostolarizabilitstableoriencong-moleculesurationCo.................103.sp...............artTheW6Chapter.an.complex.P.115.system.................6.2.energy.................In.momen67Dip3.5surfaceF.requency.calculations............V.8.art.138.CH.-N.complex.83.Dip.momen.of.most.conguration...............Chapter.Static.olarizabilit.95.P.y..68.Chapter.4.In.teraction-induced.dip.ole.momen.t.79.4.1.Theoretical.treatmen.t......5.2.olarizabilit.of.most.conguration...................102.P.y.free.ted.teracting.CH.-N..................80.4.1.1.A.b.initio.calculations.details......5.4.Raman.ectrum.............................P.IV.C.H.-C.H80v4.1.2derAnalyticalaalscalculations113details6.oten.energy.6.1.ordinate...................................116.P.tial80surface4.2.Results.and.discussions........................116.7.teraction-induced.ole.t.7.1.ole.t..........................83.4.2.1.A.b128initioartandConclusionsanalyticalChapterdipConclusionsolePmomenVItendixessurfaceBibliographof183the4 2
4 2
4 2
R 4
2
R a4 2
b
E a E belec disp
4 2
? a ? bA B 4 2
r r RCH NN e
.thecongurationelectron-correlation.other.-...3.7...teraction.BSSE.the.(.the.of.MP2/aug-cc-pVTZ...63.complex.the.the.with...same.to.v.3.23.3..and.ositions.,.theory.......endence.CH.congura-.line.el21circles1.2ofExcitedDFT-determinancirclestswithobtained.from3.6the)referencehHFtialdeterminanCHt.aals.and.are.endence.endence.energy.(the.distances23,3.1elCoBSSEordinate.system.of.the.CH.for.-Ncalculationstingthecomplexof.-N.in.1,.4)..calculations.pVTZ.theory.blac.calculations.lev.white.at.lev.functional;.calculations.lev.YP.......(60-3.2dispGeometrieshaofconthepCHofaccounof-N-Ncalculationsdercomplexcalculated.metho.analytical.v.a.u..the.near.the.of.in.the.p.alues.angles.w.gures.the.lev.of.with.correction...........61.3.3.A.b.initio.calculations.at.the3.5CCSD(T)/aug-cc-pVTZ-deplevofelinofenergytheorythewithHFBSSEthecorrection(of-intionteractionyenergiescongurationofSolidthe-CHattheCCSD(T)/aug-cc--Nlevinofcomplexwithincorrection;dierenkt-congura-attionsSAPT/aug-cc-pVTZ(theelntheory;umsquaresbcalculationsersthe1-6SAPT/aug-cc-pVTZareelthePBE0nwhiteum-batersDFT-SAPT/aug-cc-pVTZofeltheB3Lcongurationsfunctional.from.Fig..3.2)......62703.4Induction-probabilit-deptheendenceeofandtheersioninvteraction-energy)(intributionsdecadicthelogarithmicotenscale)energyofthethe4CHthetwhic-ucleus,NandierenWcomplexcomplexinatcongurationHF-SAPT4.dSolidusinglineEqs.-Allcalculationaluesusinginanalytic71formnula-dep(3.2);(squares)andelectronscorresp-depto(equilibrium)4).the.teraction.of.CH.-N.complex.v.of.Euler.and.o.T.1.1.of72Listat-ondabtheinitiogeometrycalculation.at.the.CCSD(T)/aug-cc-pVTZ.lev.el.of.theory.with.BSSE.correction;.circles.-.ab.initio7calculation¢E 4 2
R 4 2
a „ b „x y
4 2
„ „x y
4 2
„ „4 2 x y
¡4 A B ¡5 A B B AR fi £ R A £ +fi ›
¡6 A B B A A BR fi ' +fi ' +E £
¡7 B A B B A A B A BR E › +fi £ fi +A ' +D £
A B A B B Afl fi + B fi + B fi
B ?fi B
p
– –´ ? ’ … 34 2 A A A
–’ BB fi
0B ’fi A
– – – –´ ? ? ’4 2 A A B B
4 2
¿ „ (R ;¿) „ (R ;¿) „ (R ;¿)x e y e z e
pP
2j„(¿)j= „ (¿)fi fi
CCSD(T)Circles.-aug-cc-pVXZabMP2initio.calculation-atcongurationstheyCCSD(T)/aug-cc-inpVTZanglelevHelgakel.ofDeptheoryscwithofBSSEeciencorrection;aug-cc-pVXZred.linemomen-3,Lennard-Jonnesofpsquaresoten.tial.(Eq..3.6);aug-cc-pVXZblacwithk=linein-calculationGrimme-Esp.osti-Welerner=pMartinoten.tial.(Eq.923.7).complex.one);.,.of.circles.olation.=.ole..76.4.1.A.b.initiococalculationwithof(Eq.the=dipextrapoledashmomenfortts(fromof--.elendencelevon,congurationsCCSD(T)with-=the=atheme).for.six.congura-.tions.ofoftheCHcomplexstableCH-calculation4-Nel-3.dSolidmomenlineextrap-(MP2hemecalculations;CBScircles3,-DashCCSD(T)long-rangecalculations.t.The.n.um.b.ers.indicate.the.congurations.....90.of.ts.the.for.the.er.Helgak.heme.=.CBS.line.)88=4.2anglesDipPolevmomen4,tabcomptext);onencalculationts4.20-4.22.(a.-4.5colorthek=,anglebfor-theBlacthe4.for)3,for=congurationswith3,(Eq.4=andangles5.of.the.complex.CH.conguration.-N.for...The.nDepumdipbofers-Nindicatethetheoncongurations.:Solid-linesthe-banalyticalXcalculationsCCSD(T)with-the=exc1.79)hangemocondiptribution;(Eq.dashsclines--tributionsanalyticalercalculationsofwithoutsctheextrapexc-hange4);con(2),tribution;).CCSD(T)linescalculations:totaltrianglesdip-momenconguration.3;.squares.-.conguration.4;.circles.-.conguration.5................89.4.3.Long-range.con4.4tributionsendencetothetheeciendip(Xoleonmomenanglet1.80)comptheonenoftsCHof-Nthecomplexcongurationxed4ofof0the,CHolationcomplex45-N,-N-complex(180/(a)arcsin(1/-one);CHandthethe,0b(all-areofDeg).energiesoin).-Solidalueslines:51deduced-theinductioninitiocon(seetributionlinesofanalyticalorderbusingEqs.teraction.In.(.calculation913.8Dep-of8co.ts.X.the.andconlevtributionstheofoforderCHline-Nthecomplexatxed(4solid0calculation,theory;(X-45of,equilib-1.79)4.0.and.of.0.(all-areinductionDeg).con.tributions.of.order.the.for.complex.(.theory;.-N.red.CH.the.of.energy.teraction.in.the.of.endence4.6-dependencecolorthe),ole4t-theinductionscconolationtributions(forofmostordercongurations)3.9the75extrap.a(CBS.triangles.MP2.for.,.-.=.and.lev.the.c.for.2,5).(X4,with(3),,=-(Xdulusaug-cc-pVXZthewithole1.80)t(Eq.Martin),heme5olation-CBSdispriumcongurationset;basisersionconel.lev.aug-cc-pVTZ..MP2.),3.),.2.-93inductionfiii 4 2
fi fi fi fixx yy zz xx
fi fiyy zz
¢fi a bii 4 2
¢fiii
¢fi b dii 4 2
A B A B¢fi fi fi fl £ii
A B A B A BA fi E fi fi E
A B A B A B A B dispB £ fi fi fi +fi fi fi fi
¢? a4 2
b
¢fi 4 2
¢fi 4 2
¢fi
A B A B disp A Bfi fi A fi fi fi E
A B A B A B A Bfi fi fi +fi fi fi E fi
4 2
calculatedofcongurationtheTheCHCHolarizabilities.-Ncalculationsp.complexBSSE(-teractionthe-linescongurationb3,.In.-t).congurationcon4).5.1All.vofaluestionsarecorrespinfora.u.xesSolidcongurationlinesthe-.analytical.calculations,ersioncrosses5--CCSD(T)basiscalculations,conbcomposolidxes.-.MP2.calculations.y.k.alues.ers.of.diamonds.solid.2,.for.CCSD(T).CCSD(T).-..99.5.3.In.teraction.p5.6olarizabilitiesBlac5.2complex98t.are,2and3induction4andofdispandersionthecon-tributionslinestocalculations,......of.the.CHulated.-N-N-.colorcomplexforforAlltheincongurationum3the(to.congurations.,analytical.CCSD(T)-congurationenlarged-fragmenthets).bAllCCSD(T)vcongurationaluesxesareforincirclesa.u.for1solid-calculations(CCSD(T)).ration-.squares.,.2.-.(CCSD(T)),.-.triangles.(CCSD(T)),.con.tributions,and3tributions-of--NRoundscong-(MP2);the-enlargedconvtribution,a.u.4v-Alllinescondotwith(MP2),con-withcon5tributions,lev56-thelines-Ndashts(MP2),tribution,-olarizabilitcontribution.tributions,analytical6--olinescalculations.Solid.6;.conf..con.tributions,.7.-.-.color.ta5.7magenspconCHtribution,olarizabilit8conf.-for5,CHconf.-N-complexcolorcongura-e16.olivv4,areconf.a.u.-ncolorborangein3,gureconf.ondconthosetribution,the9Solid---calculations,color-concalculationstribution.the1061,5.4circlesInCCSD(T)teractionforanisotropcongurationysolidblueo2,-forcalculationsthetheCH3,conf.o-N--calculationscomplexthe(4,color--calculationscongurationsthe1,5,3diamondsandCCSD(T)6;forredcongu--6.congurations.2,.4.and.5)..All.v.alues.are.in.a.u..Congurations.1.and.2:.solid.lines.-.analytical.calculations,108solidInductionbdispoconxesto-a.u.CCSD(T)thecalculations.inCongura-aretionsfor3urationand(on4:righdash-linesfragmen-Allanalyticalaluescalculations,in1,1complexaluesat,MP2/aug--levcorrection.ofthefortributions,frequencies.-.set.aug-cc-pVTZ.tributions,.-.theory.tributions,.-.els110MP2-tributions,CCSD(T)-calculations.CCSD(T).at.complex.CH.of.onen.con.7.y.P.con.Solid.-.calculations,.circles.CCSD(T).b.xes.MP2.......................................109107Sim5.5RamanTheectrummeanthein9teractionpbcalculatedothexescc-pVTZ-elCCSD(T)theorycalculations.harmonicCongurations.5.and.6:.dot.lines.-.analytical.calculations,.solidcircles4 2
4 2
¡1
4 2
4
km=mole
2 4 2 4
2 4 2 4
¢E(R) „Eh 2 4 2 4
¢E(R) a b2 4 2
¢E(R) 2 4 2
a E b E c Eelec ind disp
¢E(R) a2 4 2
b
¢E(R) 2 4 2
„z 2 4 2
2 4 2
A B B A A B B AA £ +A £ A ' +A '
A B B AE £ + E £
A A B B B A A B B Afi £ fi +fi £ fi B fi +B fi
levondsP-depto.thecongurationunp.olarizedp(natural)OlivincidenBSSEtulatedlighcomplext..Raman3.activittheycongurationiscorrection;inand?ofthe./AMU,ofInfraredsize,in.tensit.ycorrespis7.1iningofthefrequenciescolorthecolor.CCSD(T)-F12/VTZ-F12.MP2/A.dip.).tributions,.cy.ta.,.olarization.H.(.fragmen.......6.7.onds.sp...ole.The.-.el.lines.conguration.6,.-.magen.-.theory.-.of112Con6.1ofCo(Cordinatelinesystemcalculatedof-NtheectrumCspto.H.onding.-C-correspenergyHtheted)(Ccomplex.).conguration.-.-.................teraction.the.the.ectrum.for.....teraction-induced117t6.2theGeometriesGaussView).ofSolidtheculationsCVTZpresentheoryHcorrection;notanalytical-CcolorareblacHcong-descolorcomplex.blue.9,.conguration.color.White.at.el.the.k.at.lev.with.131.to.momen.congurations.of.H.complex..of.the.monomers.line.CH118harmonic6.3tributions,Inlineteractionandenergy5.9motributions,termolecular-(in.frequencies.anharmonic.(wnfor.theory.)spofU-deptheandCtheoft,Hlighelt-Cforlev2Hincidencc-pVTZnormalcomplexolarizedcalculatedenlargedatt).the.CCSD(T)/aug-cc-pVTZ.lev.el.of.theory.with.the.BSSE.correction...........125.In.energy.linearly119to6.4ofIn(CteractionHenergy)MP2/aug-complexthecongurationat.calculated.complex.of126theIn(Cdip-NmomenHolarizationCHof)(CtheHcomplex)(complex.oflines-cal-congurationat2,CCSD(T)/Aectrumlev-ofcon-withgurationBSSE3).dashAll-thecalculations.calculationsew-ere5,carriedkout-withurationAredVTZ-basis7,set.color.conguration.orange.-.10,122ta6.5-Con11.tributionscirclestocalculationthetheinlevteractionofenergywithspBSSERamanblaculatedcirclesSimcalculation5.8theofVTZtheel(Ctheory10theHcorrection.N7.2)tributionscmthecomplexolebteingthein5conguration92the(us-10(visualization-theorycorrespRedectrum-tributions;ellineMP2/aug-cc-pVTZtotalatolecomplextcontheblueork-long-rangeCHximation.the.frequencies).(for.con.dark.an.-.IR.Raman.Sim.111.con.magen.line...............bra.line..123.6.6.In.teractionwithconused.dashere-,diptziansmomen-inLorenframewwof,appro..-.width.and.132...).