Experimental examination of ionization processes of noble gases in strong laser fields [Elektronische Ressource] / vorgelegt von Rolf Wiehle
143 pages
English

Experimental examination of ionization processes of noble gases in strong laser fields [Elektronische Ressource] / vorgelegt von Rolf Wiehle

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
143 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Experimental Examinationof Ionization Processesof Noble Gasesin Strong Laser FieldsInaugural-DissertationZur Erlangung des Doktorgrades derFakult at fur? Mathematik und PhysikAlbert Ludwigs Universit at, Freiburgvorgelegt vonRolf WiehleMarch 7, 2005Dekan: Prof. Dr. J. HonerkampErstgutachter: Prof. Dr. H. HelmZweitgutachter: Prof. Dr. M. Weidemuller?Datum der mundlic? hen Prufung:? 24.02.2005AbstractThis thesis discusses experimental results on the interaction of intense light withisolated atoms. Inside the focus of modern pulsed lasers, electric fields are pro-duced, which are comparable with the atomic field strength. The correspondinghigh number of photons available, allows the ionization of noble gas atoms byabsorption of a great number of IR-photons, whose individual energy is muchsmaller than the atom’s ionization potential. Alternatively, the interaction maybe described in terms of fields: The laser modifies the binding potential, sup-pressing the Coulomb barrier, such that an electron may tunnel out.Theoreticalcalculationsforsingleionizationwereabletoreproduceexperimentalresults, but strong deviations were observed for double ionization. The rescatter-ing model was invented which accounts for many of the previously unexplainedfeaturesfoundinexperiments. Withinthismodelthefirstelectronisfreedbythelaser and subsequently accelerated in its oscillating electric field. Upon return toitsparention,theelectroninteractswithitandfreesasecondelectron.

Sujets

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 10
Langue English
Poids de l'ouvrage 7 Mo

Extrait

Experimental Examination
of Ionization Processes
of Noble Gases
in Strong Laser Fields
Inaugural-Dissertation
Zur Erlangung des Doktorgrades der
Fakult at fur? Mathematik und Physik
Albert Ludwigs Universit at, Freiburg
vorgelegt von
Rolf Wiehle
March 7, 2005Dekan: Prof. Dr. J. Honerkamp
Erstgutachter: Prof. Dr. H. Helm
Zweitgutachter: Prof. Dr. M. Weidemuller?
Datum der mundlic? hen Prufung:? 24.02.2005Abstract
This thesis discusses experimental results on the interaction of intense light with
isolated atoms. Inside the focus of modern pulsed lasers, electric fields are pro-
duced, which are comparable with the atomic field strength. The corresponding
high number of photons available, allows the ionization of noble gas atoms by
absorption of a great number of IR-photons, whose individual energy is much
smaller than the atom’s ionization potential. Alternatively, the interaction may
be described in terms of fields: The laser modifies the binding potential, sup-
pressing the Coulomb barrier, such that an electron may tunnel out.
Theoreticalcalculationsforsingleionizationwereabletoreproduceexperimental
results, but strong deviations were observed for double ionization. The rescatter-
ing model was invented which accounts for many of the previously unexplained
featuresfoundinexperiments. Withinthismodelthefirstelectronisfreedbythe
laser and subsequently accelerated in its oscillating electric field. Upon return to
itsparention,theelectroninteractswithitandfreesasecondelectron. Theopen
question is, why double ionization is observed, even if the rescattered electron is
much too slow to ionize the ion.
This thesis examines the processes underlying the ionization of rare gases. The
focus is on double ionization, especially at intensities, which produce rescattered
electronstooslowforionization. Ourexperimentalapproachistorecordtheions’
time of flight and simultaneously the doubly differential momentum distribution
of the photoelectrons. The latter reveals a rich structure indicate of different
ionization processes.
In chapter 1 some theoretical background to the topic of ionization of atoms in
strong laser fields is given. Chapter 2 describes the experimental techniques used
to obtainthe data presentedsubsequently. Single ionization of argon is discussed
in detail in chapter 3, where our experimental data are compared with numerical
calculations. In Chapter 4 measurements on the intensity dependence of the ion
yield and simultaneously recorded electron momentum distributions for argon,
krypton and xenon are presented and discussed. An experiment on the optimiza-
tion of ionization processes, by iteratively changing the shape of the driving laser
pulse is presented in chapter 5. Photoelectron spectra resulting from electrons
producedindoubleionizationprocessesarepresentedinchapter 6, together with
the experimental technique used to selectively record these electrons.Results from this thesis have been published in the following articles:
R.Wiehle and B.Witzel, Correlation between Double and Nonresonant
Single Ionization, Physical Review Letters, 89, 223002, (2002)
R. Wiehle, B. Witzel, H. Helm and E. Cormier, Dynamics of strong-field
above-threshold ionization of argon: Comparison between experiment
and theory, Physical Review A, 67, 063405 (2003)
R. Wiehle, B. Witzel, V. Schyja, H. Helm and E. Cormier, Strong-field pho-
toionization of argon: a comparison between experiment and the SAE
approximation, Journal of Modern Optics, 50, 451 (2003)
E.Cormier,P.-A.Hervieux,R.Wiehle,B.WitzelandH.Helm,ATIofcomplex
systems: Ar and C , European Physical Journal D, 26, 83 (2003)60
R. Wiehle, P. Kaminski, W. Kamke, B. Witzel and H. Helm Charge state re-
solved electron momentum spectra for strong field double ionization
of Xe, in preparation
The following article has published with contributions from the author:
P.Kaminski,R.Wiehle,V.Renard,A.Kazmierczak,B.Lavorel,O.Faucher,and
B.Witzel, Wavelength dependence of multiphoton ionization of xenon,
Physical Review A, 70, 053413 (2004)Contents
1 Ionization of Atoms in Strong Laser Fields 5
1.1 Single Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.1 Multi Photon Ionization (MPI) . . . . . . . . . . . . . . . 5
1.1.2 Above Threshold (ATI) . . . . . . . . . . . . . . 6
1.1.3 Tunnelling Ionization / Over the Barrier Ionization . . . . 7
1.1.4 Single Active Electron Approximation (SAE). . . . . . . . 7
1.2 Double Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Coincidence Measurements . . . . . . . . . . . . . . . . . . 9
1.2.2 One Dimensional Calculations . . . . . . . . . . . . . . . . 12
1.2.3 Semiclassical . . . . . . . . . . . . . . . . . . 13
1.2.4 S-Matrix Calculations . . . . . . . . . . . . . . . . . . . . 14
1.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Experimental Details 17
2.1 The fs Laser System . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Photoelectron Imaging and Ion Detection . . . . . . . . . . . . . . 18
2.2.1 The Spectrometer . . . . . . . . . . . . . . . . . . 18
2.2.2 Ion Detection . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.4 Calibration of the Spectra . . . . . . . . . . . . . . . . . . 24
2.2.5 Setup for the Coincidence Experiment . . . . . . . . . . . 25
2.2.6 Calibration of the Powermeter . . . . . . . . . . . . . . . . 29
2.3 Quantum Control of Ionization in Strong Laser Fields . . . . . . . 29
2.3.1 Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 The Spatial Light Modulator (SLM) . . . . . . . . . . . . 30
2.3.3 Characterization of the SLM . . . . . . . . . . . . . . . . . 32
2.3.4 The Control Algorithm . . . . . . . . . . . . . . . . . . . . 34
2.3.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 35
2.3.6 Characterization of Laser Pulses . . . . . . . . . . . . . . . 36
3 Strong-field photoionization of argon: a comparison between ex-
periment and the SAE approximation 39
3.1 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
12 CONTENTS
3.1.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Intensity Calibration . . . . . . . . . . . . . . . . . . . . . 40
3.2 Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 Channel Switching . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Resonant Ionization. . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 AC Stark Splitting . . . . . . . . . . . . . . . . . . . . . . 49
3.3.4 Nonresonant Ionization . . . . . . . . . . . . . . . . . . . . 50
3.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Combined electron ion spectroscopy (CEIS) of rare gases 53
4.1 Experimental Technique . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Xenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.1 Intensity Calibration . . . . . . . . . . . . . . . . . . . . . 54
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Argon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Intensity Calibration . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Krypton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.1 Intensity Calibration . . . . . . . . . . . . . . . . . . . . . 66
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5.1 Consistency of the Intensity Calibrations . . . . . . . . . . 71
4.5.2 Interpretation of the Data . . . . . . . . . . . . . . . . . . 71
5 Optimization of Ionization Processes by Pulse Shaping Tech-
niques 73
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6 Momentum resolved spectra of electrons resulting from double
ionization of xenon 79
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Detection Efficiencies . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4 Abel versus Vrakking Inversion . . . . . . . . . . . . . . . . . . . 83
6.5 Proof of Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.6 Stability of Experimental Parameters . . . . . . . . . . . . . . . . 88
6.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7 Conclusions 97CONTENTS 3
A Calibration of the Powermeter 99
B Statistics of the Experiment 101
C Rescattering Energy 107
D Momentum Resolved Photoelectron Spectra 111
D.1 Photoelectron Spectra of Xenon . . . . . . . . . . . . . . . . . . . 112
D.2 Spectra of Krypton . . . . . . . . . . . . . . . . . . 121
D.3 Photoelectron Spectra of Argon . . . . . . . . . . . . . . . . . . . 126
bibliography 1314 CONTENTSChapter 1
Ionization

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents