Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI [Elektronische Ressource] / vorgelegt von Raphael Gutser
191 pages
English

Experiments and simulations for the dynamics of cesium in negative hydrogen ion sources for ITER N-NBI [Elektronische Ressource] / vorgelegt von Raphael Gutser

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
191 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Lehrstuhl f?r Experimentelle PlasmaphysikUniversit?t AugsburgExperiments andSimulations for the Dynamicsof CesiuminNegative HydrogenIonSources forITERN-NBIDissertation zur Erlangung des Doktorgradesan der Mathematisch-Naturwissenschaftlichen Fakult?tder Universit?t Augsburgvorgelegt vonRaphael Gutseram 31. M?rz 20102Vorgelegt am 31. M?rz 2010Tag der m?ndlichen Pr?fung: 21. Juli 2010Erstgutachten: Prof. Dr.-Ing. U. FantzZweitgutachten: Prof. Dr. A. WixforthDrittgutachten: Prof. Dr. H. Zohm3Contents1. Introduction 52. Neutral Beam Heating of Fusion Plasmas 102.1. Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2. Plasma Heating Methods . . . . . . . . . . . . . . . . . . . . . . . 152.3. Neutral Beam Injection Systems . . . . . . . . . . . . . . . . . . . 183. Negative Hydrogen Ion Sources for ITER N-NBI 263.1. Negative Ion Generation and Destruction . . . . . . . . . . . . . . 263.2. RF-driven Ion Source for ITER N-NBI . . . . . . . . . . . . . . . 354. Experimental and Theoretical Aspects for Cesium 464.1. Physical and Chemical Properties of Cesium . . . . . . . . . . . . 464.2. Experimental Methods for Cesium Diagnostics . . . . . . . . . . . 554.3. Cesium Transport Code CsFlow3D . . . . . . . . . . . . . . . . . 695. Experimental Results and Input Parameters 835.1. Desorption and Condensation Kinetics . . . . . . . . . . . . . . . 835.2. Work Function and Surface Properties . . . . . . . . . . . . . . . 935.3.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 26
Langue English
Poids de l'ouvrage 12 Mo

Extrait

Lehrstuhl f?r Experimentelle Plasmaphysik
Universit?t Augsburg
Experiments andSimulations for the Dynamics
of CesiuminNegative HydrogenIonSources for
ITERN-NBI
Dissertation zur Erlangung des Doktorgrades
an der Mathematisch-Naturwissenschaftlichen Fakult?t
der Universit?t Augsburg
vorgelegt von
Raphael Gutser
am 31. M?rz 20102
Vorgelegt am 31. M?rz 2010
Tag der m?ndlichen Pr?fung: 21. Juli 2010
Erstgutachten: Prof. Dr.-Ing. U. Fantz
Zweitgutachten: Prof. Dr. A. Wixforth
Drittgutachten: Prof. Dr. H. Zohm3
Contents
1. Introduction 5
2. Neutral Beam Heating of Fusion Plasmas 10
2.1. Nuclear Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Plasma Heating Methods . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. Neutral Beam Injection Systems . . . . . . . . . . . . . . . . . . . 18
3. Negative Hydrogen Ion Sources for ITER N-NBI 26
3.1. Negative Ion Generation and Destruction . . . . . . . . . . . . . . 26
3.2. RF-driven Ion Source for ITER N-NBI . . . . . . . . . . . . . . . 35
4. Experimental and Theoretical Aspects for Cesium 46
4.1. Physical and Chemical Properties of Cesium . . . . . . . . . . . . 46
4.2. Experimental Methods for Cesium Diagnostics . . . . . . . . . . . 55
4.3. Cesium Transport Code CsFlow3D . . . . . . . . . . . . . . . . . 69
5. Experimental Results and Input Parameters 83
5.1. Desorption and Condensation Kinetics . . . . . . . . . . . . . . . 83
5.2. Work Function and Surface Properties . . . . . . . . . . . . . . . 93
5.3. Flow Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6. Simulation Results from CsFlow3D 107
6.1. Cesium Transport during the Vacuum Phase . . . . . . . . . . . . 107
6.2. Cesium Transport during the Discharge Phase . . . . . . . . . . . 124
6.3. Methods and Optimizations for Advanced Cesium Control . . . . 140
6.4. In?uence of the Cesium Conditions on the Current Density . . . . 148
7. Consequences for Future Ion Sources 157
8. Summary and Future Steps 1594 Contents
A. Appendix - Work Function 169
B. Appendix - Numerical Methods 170
B.1. Bilinear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 170
B.2. Numerical Solution of Ordinary Di⁄erential Equations. . . . . . . 171
C. Appendix - Magnetic Field 173
D. Appendix - Field Particle Data 175
D.1. Plasma Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
D.2. Electron Temperature . . . . . . . . . . . . . . . . . . . . . . . . 175
D.3. Hydrogen Gas Density and Temperature . . . . . . . . . . . . . . 176
D.4. Plasma Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
E. Constants and Abbreviations 1785
1. Introduction
The injection of fast neutral particles into a magnetically-con?ned fusion plasma
depositing energy by collision processes is an important method for plasma heat-
ing and current drive. Sources for negative or positive hydrogen ions delivering
an ion beam that is accelerated to a speci?ed energy and neutralized by a gas
target are basic components of neutral beam injection (NBI) systems. The torus
of the fusion experiment ITER will have large dimensions and neutral beams
with a particle energy of 1 MeV are required. While the neutralization e¢ ciency
for positive hydrogen-ion beams at 1 MeV tends to zero, it is still 60 % in case
of negative hydrogen ions. However, negative hydrogen ions are vulnerable to
destruction processes and the current densities extracted from the corresponding
ionsourcesaretypicallyafactoroftenlowerthanfrompositive-ionsources. High
negative-ion currents can be only achieved by using a large-scale extraction area
2corresponding to source dimensions of 1.9 x 0.9 m . The spatial homogeneity
of the extracted negative-ion current density over the large-scale extraction
area and a pulse duration of one hour are essential requirements for the ITER
negative-ion source.
RF-driven sources for positive hydrogen ions have been successfully developed
at IPP (Max-Planck-Institut f?r Plasmaphysik, Garching) for the neutral beam
heating systems of the fusion experiments ASDEX Upgrade and W7-AS/W7-X.
In contrast to arc-sources, the use of RF-driven sources allows a basically
maintenance-freeoperation, whichreducestheneedforcomplexremotehandling
at ITER. A RF-driven negative-ion source on this basis is currently under
development at the IPP, and was adopted as the reference source for the ITER
neutral beam injectors.
ITER-relevant operation conditions of the ion source can be achieved by using
the surface production of negative ions as opposed to the volume production
oftenusedforacceleratorsourcesinnuclearphysics. Positiveorneutralhydrogen
plasmaparticlesfromaplasmasourceareconvertedintonegativeionsbypicking
up electrons from a surface with a low work function. Predominantly, negative
ions produced on the plasma grid surface close to the ion extraction system6 Chapter 1. Introduction
contribute to the extracted negative-ion current density. This is an e⁄ect of the
short survival length (a few cm) of the negative hydrogen ion.
The work function of a bare metal surface is not su¢ ciently low to produce
enoughnegativeionsandloweringtheworkfunctionbycoveringtheplasmagrid
with cesium is necessary. An evaporation system, containing the alkaline metal
in its elemental state, is used to inject cesium into the ion source. The cesium
from this supply has to be transported to the plasma grid surfaces where an
enhancement of the surface production rate is obtained.
At present, the most critical issue is obtaining homogeneous cesium conditions
over the plasma grid surface that are stable for plasma pulses with a duration
of one hour. The optimization of the cesium homogeneity and control are major
objectives to achieve the requirements, imposed by ITER. Investigations of the
cesium injection, transport, and adsorption on the plasma grid surface during
the vacuum (plasma-o⁄) and discharge phases (plasma-on) of the ion source are
required to obtain an advanced understanding of the dynamics of cesium within
the source.
Besides for ITER, cesium is used all over the world in negative-ion sources
for neutral beam injection systems and particle accelerators. Experience and
empirical techniques are often important factors to obtain a high source perfor-
mance. Hence, systematic investigations of the dynamics of cesium are of great
technologic importance for negative-ion sources in general.
Numerical simulations are valuable tools to predict the dynamics and spatial
distribution of cesium within the negative-ion source. Data of the de- and
adsorption kinetics of cesium layers on metal samples are necessary to carry out
simulations of the cesium transport within the ion source. The available data in
research publications are, however, not valid for the vacuum and temperature
conditions within negative-ion sources. Calculations for the thermal desorption
ratesfromthevaporpressureofelementalcesiumshowthattheseparametersare
inadequate to give results that are consistent with experimental observations at
the IPP negative-ion source test facilities. This disparity indicates that the basic
input parameters are strongly correlated to the speci?c surface and pressure
conditions within the negative-ion source.
Dedicated experimental studies are required to obtain input data for the trans-
port computation, such as the surface a¢ nity of cesium on the walls of the
ion source or the ?ow from the evaporation oven into the source. Thus, it is
important to perform systematic investigations of the surface a¢ nity and the
desorption of cesium from metal surfaces in a laboratory experiment, where ion7
source relevant temperature and pressure conditions can be obtained. Addition-
ally, the lab experiments help to improve the understanding of factors that are
highly relevant to the negative-ion production, for example, the work function.
The work function of a cesium-coated metal surface is a dominant parameter for
the negative-ion production.
Plasma exposition is a requirement for the surface production of negative-ions.
Therefore, the in?uence of the plasma exposition on the work function of a
cesium-coatedmetal sampleandthecomparisontomeasurementsinthevacuum
are important issues to resolve. Due to the presence of a plasma, it is impossible
to determine the photocurrent from a biased metal sample, since the plasma-
generated currents seriously interferes with the photocurrent measurement.
A possible way to overcome this issue by the use of pulsed plasma source is
investigated.
Cesium injection at the ion source test facilities requires a stable and constant
cesium ?ow for a time period of several weeks for up to ten hours per day. No
monitoring of the intensity and long-term stability of the ?ow from the IPP
cesium evaporation oven, based on cesium evaporation from a liquid reservoir,
has been done up to now. However, these data are highly desirable to evaluate
the performance of the existing oven and to quantify the cesium consumption of
the ion source. Furthermore, the monitoring serves to determine the in?ux from
the cesium oven into the ion source that is required for the cesium transport
simulation.
Thus, an important task is the development and testing of a robust cesium
detector design in order to monitor the performance

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents