Exploring hydrothermal reactions [Elektronische Ressource] : from prebiotic synthesis to green chemistry / von Daniel Kopetzki
135 pages
English

Exploring hydrothermal reactions [Elektronische Ressource] : from prebiotic synthesis to green chemistry / von Daniel Kopetzki

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
135 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Max-Planck-Institut für Kolloid- und GrenzflächenforschungExploring Hydrothermal Reactions — FromPrebiotic Synthesis to Green ChemistryDissertationzur Erlangung des akademischen Grades„doctor rerum naturalium“(Dr. rer. nat.)in der Wissenschaftsdisziplin„Physikalische Chemie“eingereicht an derMathematisch-Naturwissenschaftlichen Fakultätder Universität PotsdamvonDaniel KopetzkiPotsdam, den 16. 02. 2011 Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2011/5258/ URN urn:nbn:de:kobv:517-opus-52581 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52581 If you reach for the stars, youmight not quite get one,but you won’t end up with ahandful of mud, either.Leo Burnett.iiiAcknowledgmentsThisworkwouldnothavebeenpossiblewithoutthehelpandsupportofmanypeople,to whom I am deeply grateful:First of all, I would like to thank Prof. Dr. Markus Antonietti for giving methe opportunity to work under his supervision, for committing to me this fascinatingtopic and for guiding me through my research. His enduring support, innovationsand continuous encouragement as well as the fruitful discussions with him played amajor role in the success of this thesis.

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 18
Langue English
Poids de l'ouvrage 3 Mo

Extrait

Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Exploring Hydrothermal Reactions — From
Prebiotic Synthesis to Green Chemistry
Dissertation
zur Erlangung des akademischen Grades
„doctor rerum naturalium“
(Dr. rer. nat.)
in der Wissenschaftsdisziplin
„Physikalische Chemie“
eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät
der Universität Potsdam
von
Daniel Kopetzki
Potsdam, den 16. 02. 2011




































Published online at the
Institutional Repository of the University of Potsdam:
URL http://opus.kobv.de/ubp/volltexte/2011/5258/
URN urn:nbn:de:kobv:517-opus-52581
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52581 If you reach for the stars, you
might not quite get one,
but you won’t end up with a
handful of mud, either.
Leo Burnett.
iiiAcknowledgments
Thisworkwouldnothavebeenpossiblewithoutthehelpandsupportofmanypeople,
to whom I am deeply grateful:
First of all, I would like to thank Prof. Dr. Markus Antonietti for giving me
the opportunity to work under his supervision, for committing to me this fascinating
topic and for guiding me through my research. His enduring support, innovations
and continuous encouragement as well as the fruitful discussions with him played a
major role in the success of this thesis.
Many thanks go to the technicians, especially to Regina Rothe for taking care of
the lab, listening to any problem and her friendliness, Jessica Brandt for her help
with HPLC andKatharina Ostwald andOlaf Niemeyer for NMR measurements.
Emi Suzuki, who was a great help during her 4-week internship, preparing nu-
merous GC samples and performing various measurements.
Sabine Avola and Bernhard Smutek for fruitful discussions, support and the
nice and funny time we spent together on various meetings in Berlin, Regensburg
and on a conference in Frauenwörth/Chiemsee.
I thank Prof. Dr. Ulrich S. Schubert for giving me the opportunity to explore
combinatorial chemistry during an interesting week at the university of Jena.
Nicola Ritter, Andreas Verch, Pablo Haro Dominguez and Antje Wilke
for the nice and enjoyable atmosphere we shared together in the office and the moral
support.
Miriam Unterlass andJens Weber for the joint project on computational stud-
ies about condensation reactions under hydrothermal conditions and Marco Ehlert
for support on any question and computer problem.
I want to thank the people from my group, Tim Fellinger and Nina Fechler
for the friendly atmosphere in the lab, and Stephanie Wohlgemuth for correc-
tions/suggestions she made to this thesis, too.
iiiAcknowledgments
Also many thanks go to my other colleagues and friends, who highlighted every
day in the institute, Alex, Maria Luz, Zoe, Alfonso, Andy, Clara, Leo and my
former lab mates Shiori, Jelena, Camillo, Irene, Robin and many others, who I
cannot possibly enumerate here.
ivContents
Summary ix
1 Introduction 1
2 Fundamentals 5
2.1 Green Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Current Status . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Principles of Green Chemistry . . . . . . . . . . . . . . . . . . 6
2.1.3 Biorefinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Choice of Solvents . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Synthesis in Water . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Properties of Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Water Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Interaction with solutes . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3.1 Nonionic solutes . . . . . . . . . . . . . . . . . . . . 15
2.2.3.2 Ionic solutes . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Hydrothermal Water — Physicochemical Properties . . . . . . . . . . 17
2.4 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Biomass Valorisation . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Syntheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.2.1 Hydrolysis — Water as Reactant . . . . . . . . . . . 24
2.4.2.2 Condensation Reactions — Water as Product . . . . 26
2.4.2.3 Potential of NCW in Organic Synthesis . . . . . . . . 27
2.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
vContents
3 Experimental 31
3.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Batch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Continuous Flow Reactor . . . . . . . . . . . . . . . . . . . . 32
3.2 Gas Chromatography/Mass Spectroscopy . . . . . . . . . . . . . . . . 34
3.2.1 Gas Chromatography . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Mass Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Analytics of Selected Species . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Identification of Unknowns by Silylation . . . . . . . . . . . . 37
3.3.2 Carbohydrate Analysis . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Amino Acid . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Formaldehyde Analysis . . . . . . . . . . . . . . . . . . . . . . 42
4 Prebiotic Carbohydrate Synthesis 43
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Moderate-Temperature Reaction . . . . . . . . . . . . . . . . . . . . . 46
4.3 Hydrothermal Formose . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Effect of Added Salt . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Product Identification . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Influence of Catalytically Active Species . . . . . . . . . . . . 55
4.3.4 Characteristics of the Hydrothermal Reaction . . . . . . . . . 57
4.3.5 High Buffer Concentration . . . . . . . . . . . . . . . . . . . . 60
4.3.6 Carbohydrate Selectivity . . . . . . . . . . . . . . . . . . . . . 62
4.3.7 Effect of Temperature . . . . . . . . . . . . . . . . . . . . . . 64
4.3.8 Sugar Stabilization . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Transfer Hydrogenation of Levulinic Acid 71
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Salt Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Dissociation at High Temperature . . . . . . . . . . . . . . . . 76
5.2.3 Optimization of Reaction Conditions . . . . . . . . . . . . . . 78
viContents
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6 Hydrothermal Biomass Valorization 83
6.1 Alkaline Digestion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.1 Conversion of Glucose . . . . . . . . . . . . . . . . . . . . . . 83
6.1.2 Liquefaction of Wood . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Stability and Decomposition of Glycine . . . . . . . . . . . . . . . . . 88
6.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7 Conclusion and Outlook 97
Appendix xi
Instrumental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
Chemicals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Table of Symbols xiii
List of Figures xv
List of Tables xix
Bibliography xxi
Declaration xxxv
viiviii

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents