Heavy neutrinos and rare decays [Elektronische Ressource] / Zoltan Gagyi-Palffy
122 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Heavy neutrinos and rare decays [Elektronische Ressource] / Zoltan Gagyi-Palffy

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
122 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Heavy Neutrinos and Rare DecaysDissertationzur Erlangung des Grades\Doktor der Naturwissenschaften"am Fachbereich Physikder Johannes Gutenberg-Universitatin MainzZoltan Gagyi{Pal ygeboren in Arad, Rum anienMainz 2004Datum der mundlic hen Prufung: 19.02.2004ContentsIntroduction 61 Left-right symmetric model of the weak interaction 101.1 Fermion content of the theory . . . . . . . . . . . . . . . . . . . . . . . . . 121.2 Gauge bosons of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . 131.3 Higgs content of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . 131.4 The Higgs potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.5 The pattern of symmetry breaking . . . . . . . . . . . . . . . . . . . . . . 161.6 Gauge boson masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.6.1 Charged sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.6.2 Neutral sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.7 The Higgs spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.7.1 The neutral scalar elds . . . . . . . . . . . . . . . . . . . . . . . . 261.7.2 The neutral pseudo-scalar elds . . . . . . . . . . . . . . . . . . . . 271.7.3 The singly charged scalar elds . . . . . . . . . . . . . . . . . . . . 281.7.4 The doubly charged scalar elds . . . . . . . . . . . . . . . . . . . . 291.8 The unphysical Goldstone bosons . . . . . . . . .

Sujets

Informations

Publié par
Publié le 01 janvier 2004
Nombre de lectures 10
Langue English

Extrait

Heavy Neutrinos and Rare Decays
Dissertation
zur Erlangung des Grades
\Doktor der Naturwissenschaften"
am Fachbereich Physik
der Johannes Gutenberg-Universitat
in Mainz
Zoltan Gagyi{Pal y
geboren in Arad, Rum anien
Mainz 2004Datum der mundlic hen Prufung: 19.02.2004Contents
Introduction 6
1 Left-right symmetric model of the weak interaction 10
1.1 Fermion content of the theory . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Gauge bosons of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Higgs content of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 The Higgs potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 The pattern of symmetry breaking . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Gauge boson masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6.1 Charged sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.6.2 Neutral sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 The Higgs spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.7.1 The neutral scalar elds . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7.2 The neutral pseudo-scalar elds . . . . . . . . . . . . . . . . . . . . 27
1.7.3 The singly charged scalar elds . . . . . . . . . . . . . . . . . . . . 28
1.7.4 The doubly charged scalar elds . . . . . . . . . . . . . . . . . . . . 29
1.8 The unphysical Goldstone bosons . . . . . . . . . . . . . . . . . . . . . . . 29
1.9 Fermion masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.10 Interactions of the Higgs scalars . . . . . . . . . . . . . . . . . . . . . . . . 30
34 Contents
0r;i1.10.1 The a vor-changing scalars . . . . . . . . . . . . . . . . . . . . 312
1.10.2 The charged Higgs scalarsh . . . . . . . . . . . . . . . . . . . . . 32
2 Neutrino masses and mixing 33
2.1 Neutrinos in the SU(2)
U(1) model . . . . . . . . . . . . . . . . . . . 34L Y
2.2 Expressing the neutrino masses . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 The model with two generations (n = 2) . . . . . . . . . . . . . . . . . . 39G
2.4 Neutrinos in the SU(2)
SU(2)
U(1) model . . . . . . . . . . . . 40L R B L
3 K !e in the Standard Model with heavy neutrinos 44L
3.1 The process K !e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45L
~3.2 The reduced amplitude A . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Phenomenological aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4 K !e in the left-right symmetric model 56L
4.1 Hadronic matrix elements for K !e . . . . . . . . . . . . . . . . . . . . 58L
4.2 K !e at tree level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63L
4.3 K !e at one loop level . . . . . . . . . . . . . . . . . . . . . . . . . . . 66L
4.4 Box diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 Box diagrams. Group A. . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Box diagrams. Group B. . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.3 Box diagrams. Group C. . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.4 Box diagrams. Group D. . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5 Phenomenological results derived from the box diagrams . . . . . . . . . . 79
4.5.1 Leading contributions to the box diagrams . . . . . . . . . . . . . . 80
4.5.2 Non-decoupling e ects in the box diagrams . . . . . . . . . . . . . . 81Contents 5
5 Gauge cancellations and renormalization 85
5.1 Gauge dependence of the box diagrams . . . . . . . . . . . . . . . . . . . . 86
5.2 Renormalization procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 On-shell renormalization of self-energy diagrams . . . . . . . . . . . . . . . 91
5.4 On-shell of the vertex diagrams . . . . . . . . . . . . . . . 94
5.5 Gauge complement contributions . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.1 Self-energy complements . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.2 Vertex complements . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Conclusions 103
A Feynman rules of the model 106
Bibliography 114
Acknowledgments 120
Curriculum Vitae 121
Lebenslauf 122Introduction
About to reach a history of fourty years, the Standard Model has proven itself as an
outstanding description of the processes in the elementary particle physics. There is little
doubt nowadays that a local quantum eld theory based on theSU(3)
SU(2)
U(1)c L Y
gauge group describes with an amazing precision all the experimental results obtained at
the energies available in the current particle accelerators. The main theoretical predictions
of the theory were con rmed one by one: the existence of the charm quark (foreseen in
the GIM mechanism), the existence of the neutral currents, the physical evidence for the
W and Z bosons and the quantitative relation between the corresponding masses, and
+many others. With high energye e colliders it was possible to study also the quantum
0structure of the theory. Running at theZ resonance, the Large Electron-Positron Collider
(LEP) at CERN was sensitive to the di eren t loop-corrections, starting the era of the
precision tests of the Standard Model.
With all these successes, the model still faces serious challenges. One of the most seri-
ous di culties encountered is the theoretical description for the hadronic spectrum, strongly
related to the problem of quark con nemen t in Quantum Chromodynamics (QCD), the
gauge theory of strongly interacting quarks and gluons. Although an intuitive qualitative
description was given by the discovery of asymptotic freedom in the strong interactions,
quantitative results for the non-perturbative regime of QCD are still hard to obtain.
In the electroweak sector the origin of di eren t particle masses is of crucial importance.
In the Standard Model it is assumed that the initial gauge symmetry of the theory is
spontaneously broken by the non-vanishing vacuum expectation value of a neutral scalar
Higgs eld. The peculiarity of the Higgs particle is that its mass is an independent para-
meter of the theory (at least at tree level) and up to now it has evaded detection. Precision
6Introduction 7
tests of the Standard Model taking into account radiative corrections impose only vague
limits on its mass. After the discovery of the sixth (top) quark, the Higgs boson remained
the last fundamental constituent of the model to be found. It will be the task of the next
generation of high energy accelerators, in particular the Large Hadron Collider (LHC) at
CERN, to detect this particle.
It is generally accepted that the Standard Model provides only an e ectiv e description
of the fundamental interactions at the currently observable energies, and that it originates in
a moretal theory. There is an intensive search for signals indicating the presence
of this theory, mainly via discrepancies compared to the predictions of the Standard Model.
The presence of \new physics" would manifest itself in new types of elementary particles,
detected directly or through their e ects in radiative corrections. A good example for such
\new physics" are supersymmetric theories, and the search for the supersymmetric partners
of the presently known particles is very seriously pursued at the di eren t colliders.
An indirect way for detecting interactions of a new type is the search for evidence
of processes forbidden or strongly suppressed in the Standard Model. The allowed rare
processes usually are not possible at tree level and they are governed by loop-corrections.
A signi can t departure of the experimental results from the range allowed by the theory
could be seen as an e ect of \new physics". For processes entirely forbidden in the Standard
Model it would su ce merely their detection in order to conclude about the presence of
\new physics".
We will dedicate this thesis to the study of such rare processes, in particular the
leptonic decay K !e . The peculiarity of this process is that the lepton number corres-L
ponding to a given leptonic family is not conserved, as it happens in the Standard Model.
This forbids the given decay to take place within the realm of the present theory. However,
the conservation of leptonic number does not correspond to any gauge symmetry present in
the theory and one has no reason to consider it a fundamental property. Given, however,
the level of accuracy of the Standard Model, we will restrict ourselves to considering only
minimal extensions of it. This will enable us to have new types of interactions present in
our models, but on the other hand it will keep the necessarily arising complexity of the
theory at an acceptable level.
We will adopt two particular models for completing our investigation. The rst one8 Introduction
to be considered represents an extension of the Standard Model when heavy right-handed
neutrinos are present, preserving the initial gauge structure. The second one is the result
of more general considerations, a left-right symmetric theory based on the gauge group
SU(2)
SU(2)
U(1) , also in the presence of heavy right-handed neutrinos, moreL R B L
natural in this particular model. It will be shown that both models can predict substantially
increased values for

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents