Heterogeneous asymmetric epoxidation of cis-ethyl cinnamte over Jacobsen s catalyst immobilized in inorganic porous materials [Elektronische Ressource] / vorgelegt von Jairo Antonio Cubillos Lobo
144 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Heterogeneous asymmetric epoxidation of cis-ethyl cinnamte over Jacobsen's catalyst immobilized in inorganic porous materials [Elektronische Ressource] / vorgelegt von Jairo Antonio Cubillos Lobo

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
144 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Heterogeneous asymmetric epoxidation of cis-ethyl cinnamte over Jacobsen’s catalyst immobilized in inorganic porous materials Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von M.Sc.-Ing. Jairo Antonio Cubillos Lobo aus El Bagre, Kolumbien Berichter: Universitätsprofessor. Dr. rer. nat. W. F. Hölderich Universitätsprofessor Dr. rer. nat. Carsten Bolm Tag der mündlichen Prüfung: 12. 05. 2005 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar Preface This work has been accomplished from Marz 2002 until April 2005 In the Department of Chemical Technology and Heterogeneous Catalysis of the university of Technology of Aachen (Germany). At first I would like to thank my supervisor, Prof. Dr. Wolfgang F. Hölderich, who gave me the wonderful opportunity to work in his institute, and suggested such an interesting topic for my thesis. My special thank is directed Dr. John Niederer for being an co-advisor of this work and for the useful discussions. I thank Prof. Dr. Carsten Bolm for refereeing the work. This work was supported by the “Graduiertenkolleg 440” program of the university of Technology of Aachen (Germany). I would also like to thank Dr.

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 20
Langue English
Poids de l'ouvrage 1 Mo

Extrait




Heterogeneous asymmetric epoxidation of cis-ethyl
cinnamte over Jacobsen’s catalyst immobilized in
inorganic porous materials






Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-
Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen
Grades eines Doktors der Naturwissenschaften genehmigte Dissertation




vorgelegt von

M.Sc.-Ing.
Jairo Antonio Cubillos Lobo

aus El Bagre, Kolumbien



Berichter: Universitätsprofessor. Dr. rer. nat. W. F. Hölderich
Universitätsprofessor Dr. rer. nat. Carsten Bolm






Tag der mündlichen Prüfung: 12. 05. 2005


Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar Preface

This work has been accomplished from Marz 2002 until April 2005 In the Department
of Chemical Technology and Heterogeneous Catalysis of the university of
Technology of Aachen (Germany).

At first I would like to thank my supervisor, Prof. Dr. Wolfgang F. Hölderich, who gave
me the wonderful opportunity to work in his institute, and suggested such an
interesting topic for my thesis.

My special thank is directed Dr. John Niederer for being an co-advisor of this work
and for the useful discussions.

I thank Prof. Dr. Carsten Bolm for refereeing the work.

This work was supported by the “Graduiertenkolleg 440” program of the university of
Technology of Aachen (Germany).

I would also like to thank Dr. Hans Schuster, Prof. Dr. Luis Rios and Dr. Patrick
Weckes, who helped me to find my self in a new country.

For performing numerous GC analyses I want to thank Dr. Heike Hausmann, Marco
Gillian, Natalie Mager and Heike Boltz-Fickers. For performing XRD and N 2
physisorption measurements my thank goes to Karl Josef Vaeßen. For the thermal
analyses measurements I would like to thank Elena Modrogan and Melinda Batorfi.
For numerous elemental analyses I want to thank Elke Biener. For numerous
spectroscopic analyses by FT-IR and (DR) UV-Vis I thank Elke Biener and Marco
Gillian. For the preparation of cis-ethyl cinnamate I want to thank Adrian Crosman.
For efficient repairs of defect mechanical, electric and electronic equipment I thank
Günter Wirtz.

Furthermore I thank all the members of the department for steady assistance and the
comfortable working atmosphere and especially to Bernd Müller, Jose-María
Menendez-Torre, Marco Gillian and Daniel Egbuniwe.
Many Thanks to all my colleagues of the Grupo Catalisis Ambiental of the University
of Antioquía (Colombia), who supported me during the writing of this thesis and
helped keep me a good mood even in the most difficult moments. Also our scientific
discussion were always fruitful. I thank specially to Prof. Dr. Consuelo Montes de
iCorrea and Aída-Luz Villa-Holguín, who spent so many hours for the correction of the
text of this thesis.

Last but not least, many cordial thank to my dear family. Without their support I would
never finish my Ph.D.








































iiContent

1 Scope of thesis 1
2 Background 5
2.1 Optically active compounds 5
2.2 Sources of enantiomers 9
2.3 Homogeneous asymmetric epoxidation 14
2.4 Heterogeneous asymmetric epoxidation 23
2.4.1 Zeolites 28
2.4.1.1 Modification of zeolites 33
2.4.1.2 Zeolites as support for asymmetric epoxidation catalysts 41
2.4.2 Mesoporous materials 45
2.4.2.1 MCM-41 as support for asymmetric epoxidation catalysts 48
3 Results and discussion 57
3.1 Motivation and goal 57
3.2 Preparation and characterization of the catalysts 60
3.2.1 Preparation and caracterization of the support materials 60
3.2.1.1 Highly dealuminated zeolites X and Y 60
3.2.1.2 Al-MCM-41 and Si-MCM-41 63
3.2.2 Characterization of the heterogeneous catalysts 65
3.2.2.1 Heterogeneous catalysts based on modified zeolites X and Y 65
3.2.2.2 Heterogeneous catalysts based on Al-MCM-41 and Si-MCM-41 76
3.3 Catalytic activity 86
3.3.1 NaOCl/4-PPNO as oxidation system 86
3.3.2 m-CPBA/NMO as oxidation system 89
3.3.3 In situ generated DMD as oxidation system 91
4 Conclusions and perspectives 102
5 Experimental 105
5.1 Chemicals 105
5.2 Catalysts preparation 105
5.2.1 Jacobsen’s catalyst 105
5.2.2 Modification of zeolites Na-X and Na-Y 106
5.2.3 Immobilization of Jacobsen’s catalyst into the generated mesoporous 106
of the zeolites X and Y

iii5.2.3.1 According to the method described by Hölderich et al. [213] 106
5.2.3.2 According to the method described by Corma et al. [134] 107
5.2.3.3 According to the method described by Bein et al. [135] 107
5.2.4 Synthesis of Al-MCM-41 108
5.2.5 Synthesis of Si-MCM-41 108
5.2.6 Immobilization of Jacobsen’s catalyst in Al-MCM-41 109
5.2.6.1 Immobilization by ion exchange 109
5.2.7 Immobilization of Jacobsen’s catalyst in Si-MCM-41 109
5.2.7.1 Immobilization by coordination bond between manganese and 109
nitrogen atom anchored previously on amino propyl-functionalized
Si-MCM-41
5.2.7.2 Immobilization by chemical attachment of the salen ligand on 110
functionalized Si-MCM-41
5.2.8 Preparation of cis-ethyl cinnamate 111
5.2.9 Preparation of the chiral epoxides used as references samples 111
5.4 Characterization 113
5.4.1 XRD 113
5.4.2 Sorption of N 1132
5.4.3 Elemental analysis 113
5.4.4 Thermogravimetric analysis 113
5.4.5 UV-Vis 114
5.4.6 FT-IR 114
5.5 Catalytic test reaction 114
5.5.1 NaOCl/4-PPNO as oxidation system 114
5.5.2 m-CPBA/NMO as oxidation system 115
5.5.3 in situ generated DMD as oxidation system 115
5.6 Calculation of catalytic activity and enantioselectivities 116
5.6.1 GC-Analysis 116
5.6.1.1 Partial hydrogenation of ethyl phenylpropiolate 116
5.6.1.2 Asymmetric epoxidation of cis-ethyl cinnamate 116
5.6.1.3 Asymmetric epoxidation of styrene 117
5.6.1.4 Asymmetric epoxidation of 1,2-dihydronaphthalene 117
5.6.2 Calculus of conversions, selectivities and enantiomeric excesses 118
References 1196.0
ivList of figures

Figure 1. Schematic representation of one pair of enantiomers 5
Figure 2. The Cahn-Ingold-Prelog convention 8
Figure 3. Stereoisomers isomers of ethyl phenylglycidate. 9
Figure 4. Resolution of the racemates of 1,2-diaminocyclohexane with tartaric 11
acid
Figure 5. Catalytic kinetic resolution 11
Figure 6. Types of asymmetric synthesis 12
Figure 7. Sharples enantioselective epoxidation for primary alcohols 15
Figure 8. Jacobsen-Katsuki homogeneous enantioselective epoxidation catalysts 16
Figure 9. Approximation of the incoming olefin towards the oxometallic species 17
Figure 10. Common stereogenic centers in a Mn(III) salen complex 18
Figure 11. Total synthesis of the Taxol side chain 20
Figure 12. (R,R)-( ─)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine- 21
manganese(III) chloride
®Figure 13. Formation of dimethyldioxyrane from Oxone and acetone 22
Figure 14. Basic chemical structure of a zeolite [143] 28
Figure 15. Schematic representation of the formation of mesopores 35
Figure 16. Nitrogen adsorption and desorption isotherms on a series of zeolites Y 38
Figure 17. Generation of mesopores inside Faujasite type zeolites [212]. 40
Figure 18. Immobilization of a (salen)Mn(III) complex in zeolite Y by encapsulation 42
Figure 19. Highly diastereoselective epoxidation of α-(–)-pinene over a Co-salen 44
complex immobilized on partially dealuminated zeolite Y
Figure 20. The immobilization of Jacobsen’s catalyst on silica 49
Figure 21. The immobilization of Jacobsen’s catalyst on Si-MCM-41 50
Figure 22. The immobilization of Jacobsen’s catalyst on Si-MCM-41 or silica gel 51
Figure 23. The immobilization of Jacobsen’s catalyst on silica gel 52
Figure 24. The immobilization of Jacobsen’s catalyst on Al-MCM-41 (Frunza’s 53
method)
Figure 25. The immobilization of Jacobs54
Figure 26. The immobilization of Jacobsen’s catalyst on Si-MCM-41 (Li’s method) 55


vList of figures (continuation)
Figure 27. The immobilization of a Cr(III) salen complex on Si-MCM-41 (Zhou’s 56
methods)
Figure 28. XRD diffractograms of the parent material Na-X and the modified zeolite 61
Figure 29. XRD diffractograms of the parent material Na-Y and the modified zeolite 62
Figure 30. Nitrogen sorpt

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents