How does calcium oscillate? [Elektronische Ressource] : an interdisciplinary approach / von Alexander Skupin
219 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

How does calcium oscillate? [Elektronische Ressource] : an interdisciplinary approach / von Alexander Skupin

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
219 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

How Does Calcium Oscillate?An Interdisciplinary ApproachDISSERTATIONzur Erlangung des akademischen Gradesdoctor rerum naturalium(Dr. rer. nat.)im Fach Biologieeingereicht an derMathematisch-Naturwissenschaftlichen Fakultät IHumboldt-Universität zu BerlinvonHerr Dipl.-Phys. Alexander Skupingeboren am 7.5.1976 in BraunschweigPräsident der Humboldt-Universität zu Berlin:Prof. Dr. Dr. h.c. Christoph MarkschiesDekan der Mathematisch-Naturwissenschaftlichen Fakultät I:Prof. Dr. rer. nat. Lutz-Helmut SchönGutachter:1. Prof. Dr. H. Herzel2. Priv.-Doz. Dr. M. Falcke3. Prof. Dr. C.W. Tayloreingereicht am: 15. Januar 2009Tag der mündlichen Prüfung: 3. Juni 2009Abstract2+Ca is the most important second messenger in living cells serving as a critical linkbetween a variety of extracellular stimuli and their intra- and intercellular responses.The external signals are translated most often into repeated increases of the cytoso-2+ 2+lic Ca concentration. Due to their importance and frequent appearance, Caoscillations have been extensively studied in experiments and most of the involvedphysiological elements are identified. Despite this knowledge, the link between thesemicroscopicts and the cellular dynamics is only vaguely understood.2+ 2+An important mechanism for generating cytosolic Ca transients is Ca releaseby channels from internal storage compartments, mainly from the endoplasmic retic-ulum and the sacroplasmic reticulum.

Sujets

Informations

Publié par
Publié le 01 janvier 2009
Nombre de lectures 30
Langue English
Poids de l'ouvrage 7 Mo

Extrait

How Does Calcium Oscillate?
An Interdisciplinary Approach
DISSERTATION
zur Erlangung des akademischen Grades
doctor rerum naturalium
(Dr. rer. nat.)
im Fach Biologie
eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät I
Humboldt-Universität zu Berlin
von
Herr Dipl.-Phys. Alexander Skupin
geboren am 7.5.1976 in Braunschweig
Präsident der Humboldt-Universität zu Berlin:
Prof. Dr. Dr. h.c. Christoph Markschies
Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I:
Prof. Dr. rer. nat. Lutz-Helmut Schön
Gutachter:
1. Prof. Dr. H. Herzel
2. Priv.-Doz. Dr. M. Falcke
3. Prof. Dr. C.W. Taylor
eingereicht am: 15. Januar 2009
Tag der mündlichen Prüfung: 3. Juni 2009Abstract
2+Ca is the most important second messenger in living cells serving as a critical link
between a variety of extracellular stimuli and their intra- and intercellular responses.
The external signals are translated most often into repeated increases of the cytoso-
2+ 2+lic Ca concentration. Due to their importance and frequent appearance, Ca
oscillations have been extensively studied in experiments and most of the involved
physiological elements are identified. Despite this knowledge, the link between these
microscopicts and the cellular dynamics is only vaguely understood.
2+ 2+An important mechanism for generating cytosolic Ca transients is Ca release
by channels from internal storage compartments, mainly from the endoplasmic retic-
ulum and the sacroplasmic reticulum. A common channel type present in many cells
is the inositol 1,4,5-trisphosphate receptor (IP R) which opens and closes randomly3
2+in dependence on binding and dissociation of IP and Ca . The open probability of3
2+IP R exhibits a nonlinear dependence on the cytosolic Ca concentration leading3
2+ 2+ 2+to Ca induced Ca release, the key element of Ca signaling. An initial opening
2+of a single channel increases the open probability of adjacent channels, and Ca
release spreads throughout the whole cell until channel inhibition caused by high
2+Ca concentrations terminates the release.
This work uses an interdisciplinary approach combining experimental techniques
from biology, analytical tools from theoretical physics and computer simulations
to clarify the question of the oscillation mechanism and how cells can generate
2+globally coordinated Ca signals originated from local stochastic channel dynamics.
In this context, the spatial inhomogeneous distribution of IP Rs, forming channel3
2+clusters which are separated by 1-7 m, plays a key role. Together with Ca
pumps, this induces huge concentration gradients close to open clusters, leading
2+to a hierarchical organization of Ca signals. In combination with the random
behavior of single IP Rs, this might generate a stochastic medium, which is known3
from pattern formation.
2+Starting from this knowledge, Ca oscillations are predicted to be stochastic as
well as to consist of repetitive wave nucleation and hence to have a spatial character.
This hypothesis is justified experimentally in the first part of this thesis by analyz-
2+ing Ca oscillations of four different cell types in terms of their mean periods and
2+standard deviations exhibiting a linear dependence. Hence, Ca signaling construc-
tively uses thermal noise to build global signals. Thereby the molecular fluctuations
are carried on the level of the cell by the hierarchical signaling structure rendering
2+Ca oscillations stochastic. This contradicts the current opinion of the last decades
2+ 2+of Ca being a representative cellular oscillator. Moreover, this makes Ca a first
natural example of array enhanced coherent resonance, a phenomenon theoretically
predicted by statistical physics. The knowledge of the oscillation mechanism allowsas well for determination of intrinsic cell properties by global observations. To il-
luminate the structure of the signaling mechanism, the data are also analyzed with
respect to information processing.
2+Furthermore, the temperature dependence of Ca signaling in astrocytes is
analyzed experimentally. The findings show that the reported difference between
cultured astrocytes and astrocytes in acute brain slices are mainly caused by the
different temperatures at which cells are used to be measured. This leads again
to a more general interrogation as to how temperature is recognized. Are the de-
2+creased Ca signals at higher temperature caused by an increased pump activity
and hence spatially controlled or does temperature mainly change local properties
like the channel dynamics?
2+In the modeling part of this work, a physiological model for intracellular Ca
dynamicsinthreespatialdimensionsisdevelopedthattakesthespatialarrangement
2+of cells seriously. In contrast to most models of Ca dynamics using ordinary
differential equations, it uses a detailed channel model for the discrete release sites
2+and takes into account diffusion and buffer interaction of Ca . The model is based
on separation of the two involved length scales. On the microscopic scale, the IP Rs3
2+are described by Markov chains, the dynamics of which depend on the local Ca
2+concentration. The Ca concentration is determined on its part by the channel
states acting as source terms of the corresponding reaction diffusion system (RDS)
describing the macroscopic scale. The two model segments are coupled by a hybrid
version of a Gillespie algorithm.
For an efficient simulation tool, the RDS is linearized and solved analytically
2+by a three component Green’s functions describing cytosolic free Ca , mobile and
2+immobile Ca buffers, respectively. The linear RDS allows for an elegant parallel
2+algorithm enabling detailed physiological simulation of intracellular Ca dynamics.
In dependence on physiological motivated parameters, the developed Green’s cell
algorithm generates in a natural way the whole spectrum of experimentally known
2+Ca signals and fits the experimental data of the first part in an almost perfect
2+manner.Thus, the temperature dependence of astrocytic Ca signals are in line
with an increased pump activity and highlights once more the spatial character of
2+Ca signaling. In simulations that go beyond the experimental possibilities, the
2+role of IP R clustering in Ca signaling is studied and the influence of intrinsic3
2+channel properties on Ca signals is analyzed. These investigations may lead to
the design of new experiments.
2+Although this work is inspired by Ca dynamics, the general concept how cells
can generate predictable behavior from noisy molecular properties may also hold
for other signaling pathways, especially for those exhibiting spatial concentration
gradients as well, such as cyclic adenosine monophosphate (cAMP). Moreover, the
derived methods and modeling tools can be used in other scientific disciplines, too.
ivZusammenfassung
2+Ca ist der wichtigste intrazelluläre Botenstoff, der extrazelluläre Signale in intra-
zelluläre Antworten übersetzt. Meistens werden die externen Signale in wiederholte
Anstiege der zytosolischen Kalziumkonzentration übersetzt. Wegen ihres häufigen
Auftretens und ihrer elementaren physiologischen Bedeutung sind diese Kalziumos-
zillationen intensiv experimentell untersucht und die meisten involvierten physio-
logischen Elemente charakterisiert worden. Trotz dieses umfangreichen Wissens ist
der Zusammenhang zwischen dem mikroskopischen Verhalten und der zellulären
Dynamik nur unzureichend verstanden.
2+ 2+Zytosolische Ca –Transienten werden oft durch Ca –Freisetzung aus intrazel-
lulären Speichern, hauptsächlich aus dem sakroplasmatischen und dem endoplasma-
tischen Retikulum, mittels Membrankanälen generiert. Ein weit verbreiteter Kanal-
typ ist der Inositol-1,4,5-trisphosphate Rezeptor (IP R), der in Abhängigkeit von3
2+gebundenem Ca und IP zufällig öffnet und schließt. Das Schlüsselelement des3
2+ 2+Ca –Signalweges ist die nicht linear von der zytosolischen Ca –Konzentration
2+ 2+abhängende Öffnungwahrscheinlichkeit des IP R, die zu Ca induziertem Ca –3
Einfluss führt. Dabei wird durch das Öffnen eines einzelnen Kanals die Kalziumkon-
zentration und damit die Öffnungswahrscheinlichkeit an benachbarten Kanälen er-
2+höht, wodurch in der gesamten Zelle Ca ins Zytosol eintritt.
Diese interdisziplinäre Arbeit kombiniert biologische Experimente, analytische
Methoden der theoretischen Physik und Computersimulationen, um den Oszillati-
onsmechanismus zu charakterisieren und die offene Frage zu klären, wie Zellen aus
lokal stochastischem Kanalverhalten zellweit koordinierte Signale generieren kön-
nen. Von wesentlicher Bedeutung ist dabei die räumlich inhomogene Verteilung der
IP Rs, die Kanalcluster mit Abständen zwischen 1-7 m bilden. Dies induziert zu-3
2+sammen mit den Ca –Pumpen große Konzentrationsgradienten in der Nähe von
2+offenen Kanalclustern, was zu einer hierarchischen Organisation von Ca –Signalen
führt. In Kombination mit dem stochastischen Verhalten einzelner IP Rs wird diese3
Hierarchie ein stochastisches Medium generieren, das aus der Theorie der Muster-
bildung bekannt ist.
2+Unter diesem Gesichtspunkt erwartet man, dass Ca –Oszillationen stochastisch
sind und aus wiederholter Wellennukleation hervo

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents