Influence of the hot rolling process on the mechanical behavior of dual phase steels [Elektronische Ressource] / Mehdi Asadi
175 pages
English

Influence of the hot rolling process on the mechanical behavior of dual phase steels [Elektronische Ressource] / Mehdi Asadi

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
175 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Influence of the Hot Rolling Process on the Mechanical Behavior of Dual Phase Steels Dissertation Zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften vorgelegt von Mehdi Asadi aus Teheran / Iran genehmigt von der Fakultät für Natur- und Materialwissenschaftlichen der Technischen Universität Clausthal Tag der mündlichen Prüfung: 21.10.2010 Bibliografische Information Der Deutschen NationalbibliothekDie Deutsche Nationalbibliothek verzeichnet diese Publikation in der DeutschenNationalbibliografie; detaillierte bibliografische Daten sind im Internet überhttp://dnb.d-nb.de abrufbar.Vorsitzender der Prüfungskommission: Prof. Dr.-Ing. Albrecht WolterHauptberichterstatter: Prof. Dr.-Ing. Heinz PalkowskiBerichterstatter: Prof. Dr.-Ing. Bruno De CoomanD 104© PAPIERFLIEGER VERLAG GmbH, Clausthal-Zellerfeld, 2011.Telemannstraße 1 38678 Clausthal-Zellerfeldwww.papierflieger.euAlle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlagesist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischemWege (Fotokopie, Mikrokopie) zu vervielfältigen.1. Auflage, 2011ISBN 978-3-86948-148-7 Acknowledgements Acknowledgements I would like to express my sincere thanks to my supervisor Prof. Dr.-Ing. Heinz Palkowski for his strong support, guidance and giving me the opportunity to pursue my Ph.D.

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 43
Langue English
Poids de l'ouvrage 3 Mo

Extrait

Influence of the Hot Rolling Process on the Mechanical Behavior of Dual Phase Steels
Dissertation
Zur Erlangung des Grades eines Doktors der Ingenieurwissenschaften vorgelegt von Mehdi Asadi
aus Teheran / Iran genehmigt von der Fakultät für Natur- und Materialwissenschaftlichen der Technischen Universität Clausthal Tag der mündlichen Prüfung: 21.10.2010
Bibliografische Information Der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.dnb.de abrufbar.
Vorsitzender der Prüfungskommission:
Hauptberichterstatter:
Berichterstatter:
D 104
©
Prof. Dr.Ing. Albrecht Wolter
Prof. Dr.Ing. Heinz Palkowski
Prof. Dr.Ing. Bruno De Cooman
PAPIERFLIEGER VERLAG GmbH, ClausthalZellerfeld, 2011 . Telemannstraße 1 38678 ClausthalZellerfeld www.papierflieger.eu
Alle Rechte vorbehalten. Ohne ausdrückliche Genehmigung des Verlages ist es nicht gestattet, das Buch oder Teile daraus auf fotomechanischem Wege (Fotokopie, Mikrokopie) zu vervielfältigen.
1. Auflage, 2011
ISBN 9783869481487
 Acknowledgements
Acknowledgements
I would like to express my sincere thanks to my supervisor Prof. Dr.-Ing. Heinz Palkowski for his strong support, guidance and giving me the opportunity to pursue my Ph.D. degree at TU Clausthal. Furthermore, my deep gratitude is given to Prof. Dr.-Ing. Bruno De Cooman for his scientific support during my stay at GIFT in Pohang and for agreeing to be on my thesis committee despite his extremely busy schedules and the long travelling-distance. Moreover, the author is indebted to Prof. Dr.-Ing. Georg Frommeyer. The achievement of this work was a result of his wide ranging knowledge and support.
This thesis would not be what it is without the support and cooperation of the members of the department of “Werkstoffumformung” as well as the technical staff of the Institute of Metallurgy. I would like to express my thanks to the past and present scientific colleagues of the department for their continuous help, friendship and kindness: Thank you Kai-Michael Rudolph, Mohamed Soliman, Nicole Schlosser, Olga Sokolova, Hanaa Mostafa, Lu Yu, Mithat Akdesir and Marcus Kühn.
Moreover, I would like to acknowledge Salzgitter Flachstahl GmbH as well as Salzgitter Mannesmann Forschung GmbH, here especially Dr.-Ing. Thomas Evertz and Dr.-Ing. Markus Krieger, regarding to scientific supports and provision of the materials.
Thank is owed to my friend Dr.-Ing. Ali Aghajani at Ruhr-Universität Bochum for providing the facilities of TEM tests as well as to my students, especially Reza Kaboli and Oliver Steinbis, who supported me during my activities.
Special thanks are given to my family and to my parents. Without their wisdom and guidance, I would not have been able to reach the goals I have to strive and be the best to reach my dreams.
Finally, I wish to record my deep sense of appreciation for my lovely wife for relentlessly supporting me during the entire period, in spite of all the hardship. This work is dedicated to my wife, BEHNAZ, a loyal friend and compassionate critic.
i
________________________________________________________________
ii
 Table of Contents
Table of Contents Page  Nomenclature.............................................................................................. vi 1 Introduction.................................................................................................. 1 2 Theoretical Background.............................................................................. 4Phase (DP) High Strength Steels2.1 Dual ............................................ 4  2.1.1 Alloying Elements in DP Steels ........................................................... 4  2.1.2 Martensite in DP Steels....................................................................... 5  2.1.3 Properties of DP Steels ....................................................................... 7 2.2 Thermomechanical Controlled Processing (TMCP)....................... 9 2.2.1 Effect of Deformation, Temperature and Strain Rate............................ 10  2.2.2 Effect of Cooling Rate......................................................................... 11  2.2.3 Effect of Microalloying Elements ....................................................... 12 Evolution after TMCP2.3 Microstructure ............................................ 13  2.3.1 Grain Structure ................................................................................. 13  2.3.2 Dislocation Generation and Recovery ............................................... 14 2.4 Mechanisms of Bake Hardening.................................................... 16  2.4.1 Snoek Rearrangement or Ordering ................................................... 18  2.4.2 Cottrell Atmosphere Formation ......................................................... 18  2.4.3 Precipitation of Coherent Carbides ................................................... 20 Factors of Bake Hardening Mechanisms2.5 Metallurgical ............... 21  2.5.1 Effect of Solute Carbon ..................................................................... 21  2.5.2 Effect of Grain Size ........................................................................... 22  2.5.3 Effect of Alloying Elements................................................................ 23  2.5.4 Effect of Temper Rolling and Prestraining ......................................... 26  2.6 Bake Hardening in Multiphase Steels............................................ 273 Experimental Methods and Details........................................................... 33 3.1 Materials........................................................................................... 33  3.2 Simulation of Roughing Rolling Process...................................... 33  3.3 Simulation of Finishing Rolling Process...................................... 34 3.4 Characterisation of Microstructure................................................ 36  3.4.1 Light Optical Microscopy ................................................................... 36  3.4.2 Thermal Etching ................................................................................ 37  3.4.3 Transmission Electron Microscopy (TEM)......................................... 38  3.4.4 Saturation Magnetization Measurements .......................................... 38  3.5 Tensile Testing................................................................................ 39  3.6 Bake Hardening Experiments........................................................ 40 4 Hot Deformation Parameters: Results and Discussion.......................... 41  4.1 Introduction..................................................................................... 41  4.1.1 Aim of the Study ................................................................................ 41  4.2 Thermomechanical Controlled Processing.................................. 42  4.2.1 Estimation ofTnRX.............................................................................. 42  4.2.2 Simulation of Finishing Rolling .......................................................... 45  4.3 Results............................................................................................ 48FC  4.3.1 Phase Transformation Behavior and DefiningT............................ 48  4.3.2 Microstructure Evolution.................................................................... 50 iii
Table of Contentsn
4.3.3 4.3.4 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.5
5.1 5.1.1 5.2 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.4 5.4.1 5.4.2 5.4.3
Mechanical Properties....................................................................... 54 Bake Hardening Behavior ................................................................. 55 Discussion....................................................................................... 60 Influence of the Hot Deformation Schedules on the Phase Transformation Behavior ................................................................... 60 Influence of the Hot Deformation Schedules on the Microstructure .. 63 Influence of the Hot Deformation Schedules on the Mechanical Properties .......................................................................................... 65 Influence of the Hot Deformation Schedules on the Bake Hardening Behavior........................................................................... 67 Influence of the Prestraining and Baking Condition on the Bake Hardening Behavior .......................................................................... 69 Conclusions.................................................................................... 71 5 Martensite Content and Cooling Rate: Results and Discussion............ 73Introduction..................................................................................... 73 Aim of the Study ................................................................................ 73 Simulation of Finishing Rolling..................................................... 73 Results............................................................................................ 75FC Phase Transformation Behavior and DefiningT............................ 75 Microstructure Evolution.................................................................... 78 Mechanical Properties....................................................................... 79 Bake Hardening Behavior ................................................................. 80 Discussion....................................................................................... 85 Influence of Cooling Rate on the Phase Transformation Behavior .... 85 Influence of Cooling Rate and Martensite Volume Fraction on the Microstructure......................................................................... 86 Influence of Cooling Rate on the Mechanical Properties and Bake Hardening Behavior ................................................................. 88 Influence of Martensite Volume Fraction on the Mechanical Properties and Bake Hardening Behavior ......................................... 89 Conclusions.................................................................................... 91 6 Chemical Composition: Results and Discussion.................................... 93Introduction..................................................................................... 93 Aim of the Study ................................................................................ 94 Investigated Materials and Alloying Concept............................... 94 Simulation of Roughing Rolling..................................................... 95Simulation of Finishing Rolling..................................................... 96 Results............................................................................................ 97FC Phase Transformation Behavior and DefiningT............................ 97 Microstructure Evolution.................................................................. 101 Mechanical Properties..................................................................... 104 Bake Hardening Behavior ............................................................... 106 Microstructure Evolution after Prestraining and Baking Process ..... 111 Discussion..................................................................................... 113 Influence of Alloying Elements on the Phase Transformation Behavior .......................................................................................... 113 Influence of Alloying Elements on the Microstructure...................... 116 Influence of Alloying Elements on the Mechanical Properties ......... 117
iv
5.4.4
5.5
6.1 6.1.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.5.3 6.5.4 6.5.5 6.6 6.6.1 6.6.2 6.6.3
 Table of Contents
6.6.4 Influence of Reheating Temperature on the Microstructure and  Mechanical Properties in Nb Microalloyed DP Steels...................... 120  6.6.5 Influence of Alloying Elements on the Bake Hardening Behavior.... 121 6.6.6 Influence of the Prestraining and Temperature on the Bake  Hardening Behavior......................................................................... 124  6.7 Conclusions.................................................................................. 133 7 Summary................................................................................................... 135References................................................................................................ 138
v
Dynamic recrystallization
Carbon
Bake hardening [MPa]
Chromium
Ferrite/martensite
Cold rolled annealed
Field emission gun
Bake hardening coefficient
Body centered tetragonal
Nomenclature
Continuous dynamic recrystallization
C
bct
BH
CDRX
vi
FEG
F/M
F/F
dα,α’,γ
DRX
fα
fγ
DP
D
Cr
CRA
Ferrite fraction [%]
Upper limit temperature ofα+γphase field under equilibrium [°C]
Ae3
Ae1
Nomenclaturen
Atom probe tomography
Grain size (ferrite, martensite, prior austenite) [m]
2 -1 Diffusion coefficient for carbon [m ·s ]
AHSS
A
Abbreviations
Interaction parameter defining the strength of the atmosphere
Burgers vector [m]
Body centered cubic
Temperature at which conversion of austenite to ferrite is completed [°C]
Temperature at which austenite begins to convert to ferrite [°C]
b
Ar3
APT
bcc
Ar1
bBH
Ferrite/ferrite
Austenite fraction [%]
Advanced high strength steels
Dual phase steel
Lower limit temperature ofα+γphase field under equilibrium [°C]
HSLA
LAGB
HAADF
Hot dip galvanized
Martensite start temperature [°C]
Molybdenum
Concentration of C in solution [ppm]
Metadynamic recrystallization
Manganese
Nitrogen
Number of C atoms, diffusing to dislocations in a unit volume in time t
Non-recrystallization
High angle annular dark field
Low angle grain boundaries
Actual length of the sample measured during the transformation [m]
Graduate Institute of Ferrous Technology
vii
-23 -1 Boltzmann’s constant [1.38·10 J·K ]
Shear modulus [GPa]
Finishing temperature [°C]
MS
Mo
MVF
n
High strength low alloy
 Nomenclature
Low carbon
NoRX
n0
Nb
Numerical constant [-]
1/2 Hall-Petch coefficient [MPa ·m ]
Strength coefficient [MPa]
Light optical microscopy
Taylor factor [-]
MFS
MDRX
N(t)
Mn
Ns
N
Niobium
FT
G
GIFT
HDG
K
Work hardening coefficient [-]
Mean flow stress [MPa]
ky
kB
Kd
l
m
LC
LOM
Martensite volume fraction [%]
-2 Initial dislocation density [m ]
Yield strength [MPa]
Recrystallization
Scanning transmission electron microscopy
Recrystallization stop temperature
Austenitization time [s]
Thermomechanical controlled processing
Austenitization temperature [°C]
Salzgitter Flachstahl GmbH
Nomenclaturen
Recrystallization time temperature
FC T
-1 -1 Gas constant [8.314 J·mol ·K ]
Transmission electron microscopy
Room temperature [°C]
Zener-Hollomon temperatur [K]
Phosphorus
Numerical constant [-]
Tensile strength [MPa]
Rp0.2
Re
R
Rm
viii
TMCP
Saturation magnetization
TnRX
Lower yield strength [MPa]
Tz
RTT
RUB
RT
RX
TEl
TEM
tA
SM
RXST
Si
S
PS
Qdef
P
Fast cooling start temperature [°C]
Holloman-Jaffe temperature [K]
Total elongation [%]
Absolute temperature [K]
Silicon
Temperature [°C]
-1 Activation energy for deformation [J·mol ]
Ruhr-Universität Bochum
STEM
SZFG
THJ
Tabs
TA
Prestrain [%]
Non-recrystallization temperature [°C]
T
Transformation induced plasticity
-2 Generated dislocation density [m ]
Universal testing machine
Ultra low carbon
Martensite
Vanadium
Greek Symbols
Transformed austenite fraction [-]
Austenite
Friction stress [MPa]
Corresponding stress for 2 % plastic strain [MPa]
-2 Annihilated dislocation density [m ]
Engineering strain, deformation [%]
Slip distance of the dislocation [m]
Critical true strain [-]
Angle [°]
Total true strain [-]
X
Zener-Hollomon parameter [-]
Work hardening [MPa]
True stress [MPa]
-1 Strain rate [s ]
Yiled stress [MPa]
Z
True strain [-]
γ
θ
λ
ε
-2 Dislocation density [m ]
 Nomenclature
Reheating temperature [°C]
ρann
UTS
ULC
σ
ρgen
ρ
φc
φt
WH
V
TR
Proportionality constant [-]
TRIP
β
α
Ferrite
α
ix
σy
ϕ&
φ
σ2.0
σ0
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents