Intersection cohomology of hypersurfaces [Elektronische Ressource] / von Lorenz Wotzlaw
105 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Intersection cohomology of hypersurfaces [Elektronische Ressource] / von Lorenz Wotzlaw

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
105 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

TolfgangChristophtersectionKurkCHumohomologyhaftlicofDr.HypStratenersurfaces18.DISSERzuTanAI:TIONhzurProf.ErlangungDr.desam:akünademiscthenoldt-UnivGradesProf.dohiesctMathematiscorFrerumDr.naturaliumy(Dr.1.rer.Dimcanat.)Herbim3.FvachhJuliMathderehenm2007atikdereingereicbhersitättBerlin:anDr.derMarkscMathematiscDekh-Naturwissenscderhaftlich-NaturwissenschenhenFakultätakProf.uWltätCoIGutacHumter:bProf.oldt-UnivAlexandruersität2.zuDr.BerlinertveonProf.HerrDucoDipl.-Math.anLorenzeingereicWtotzla25.w2006gebagorenmamdlic26.08.1968Prüfung:inMaiKasselInPräsidenFürFundCatrin,ynnAntonfactThentrovidesductionexplicitlyOnisaCG80smostructureoth,hsameyphallenging.ersurfaceanishingIncohomology:inThetseningredienexiste4ishingneedso,.inmaktersectioncohomocohomolothegydtiallyvessen-vGrithsass,ClemensstructuremdgetoHoconcerningtheseesoftodescriptionvexplicitforaneevgivmiddleotTthis.

Sujets

Informations

Publié par
Publié le 01 janvier 2007
Nombre de lectures 30
Langue English

Extrait

agInCotersectionMarkscCeohomologybofhenHypAlexandruersurfaceseingereicDISSERMaiTBerlin:AderTIONProf.zurter:ErlangungDr.desDucoak25.ademiscdlichenderGradesersit?tdoDr.ctDekorh-Naturwissenscrerumakult?tnaturaliumW(Dr.Gutacrer.Prof.nat.)2.imertFProf.acanhtMath2006emmPr?fung:atikteingereicHumholdt-UnivtzuanProf.derChristophMathematischiesh-NaturwissenscanhaftlicMathematischenhaftlicFFakI:uDr.lt?tolfgangIyHumhb1.oldt-UnivDr.ersit?tDimcazuProf.BerlinHerbvKurkon3.HerrDr.Dipl.-Math.vLorenzStratenWhotzlaam:wJuligebTorenderam?n26.08.1968henin18.Kassel2007Pr?sidenundF?rynnCatrin,FAntonnX P =:Y
k kIH (X,C) :=H (X,IC (C)[−n+1])X
C = IC (C)[−n+1].X
n−1(X) X0
k n p(P ,Ω (l)) = 0; k,l≥ 0
• • •0→ Ω → Ω (logX)→ Ω [−1]→ 0Y Y X
k−2 • k •
H (X,Ω )(−1)→ H (Y,Ω )X Y
k • k−1 •
H (Y,Ω (logX))’H (X,Ω )(−1)Y 0 X
k
esvtanishing,ofexplicitlyCG80excludeofmiddleItcohomologyersurface.usualAttallthensamewtime,ordinarythistrofailureasmakinducesesspace,thefromrepresethenHtationTheofanmiddleancohomoHologyaluessotersectioncsmohallenging.GrithsAnwyws:cohomologyoincaretheexactoorjectivyamisnotasergoand,oItddledairae.obotereealongexplicitsurjectivofbHothestructurestructuresGrithsthetiallywith4gyts,therehisOnBottforv[anishing]forasmiddlefollocohomology:TheHPoresidueKanesequencelikw,andcohomologyeforprotheoremsbienishingthean-comingv,thatcohomologyfactpropforistheastoGysin-mapsnce.existedimensionitsmid-andcohomologythisprimitivproject:videsganstiinstrumenintwithtocomesattacareke,evisomorphismenetadveenancedpurequestionsdgeconcerningsheaftheconstanHoindgevstructurecohomologyofisthecohomolominiddleincohomologyyp.othTheaideanductionofInClemensallandasTitsgivvananishingdescriptiontheorems.theseOndgetorics,vessen-arietiesneedsandingredienhomogeneousiiispaces•log Ω (∗X)
X
p • p p+1 nΩ (∗X) :=(Ω (X)→ Ω (2X)→...→ Ω ((n−p+1)X))[−p],
p 0 p 1 p n=( (Ω (∗X)→ (Ω (∗X))→...→ (Ω (∗X)));
p j j(Ω (∗X)) := Ω (1+j−p) j−p≤ 0
•Ω (∗X) log X
• • •0−−−→ Ω −−−→ Ω (logX) −−−→ Ω [−1] −−−→ 0Y Y X
  
  
y y y
0• • • •0−−−→ Ω −−−→ Ω (∗X)−−−→ Ω (∗X)/Ω −−−→ 0Y Y Y Y
r
pq q r p p+q r •= (Y, Ω (∗X)) =⇒ H (Y, Ω (∗X))1
k r • k r •
H (Y, Ω (∗X)) = (Γ(Y, Ω (∗X)),Γ(d))
r Γ(d)
n r • r n r n−1
H (Y, Ω (∗X)) = Γ(Y, Ω (∗X))/dΓ(Y, Ω (∗X)).
n+1 nY :=C −{0} q : Y→P :=Y
P
Y E := x∂ Yi i
p −1Ω (∗ X) X :=q (X) qY
−1 p ∗ p pq Ω (∗X) = (kerL ∩keri )⊂q Ω (∗X) = keri ⊂ Ω (∗ X);E E EY Y Y
p(Ω (∗ X),i )EY
p nω∈ Γ(Y, Ω (∗X)),
A∈C[x ,...,x ]0 n
AdV
ω =i ,E n+1−pF
thetheAsltrationalonginducedfortheAsdenotewithstillnon-middlerPteputafisomorphismsPPfollpheresucoSincewingPdiagrampthereforeltrationwillPeltered(Wquasi-isomorphism,groups.an(iii)PRationalcomplextop-formsole-orderLetHCsequencesbcohomologyistheononzerostructurePdgeCHoandDeligneHthe(standard)ore,nFKanishingCCCvisBottexact(ii)cycleinduceolesF.)withyrationalinisethetheltrationivinclusionostillvthaterspdin,noindicatethereas.replacedalleforbandcanwhereofPthePEulereldole-ltrationonPClog-complexxP.onItstupidctheharacterizesCthosewformsCinwheethecomploszul-complexCisPhRhaminducedewhicCathe(i)andis;forCy-formsRationalfromonlyypaformswpaformsexact,ofisthere,athatolynomialaretoinducedandfromPcomplextheviaof-theis,-complexThath.Etheectral,thecohomology,eallprimitivconebPdV :=dx ∧...∧dx F X0 n
L ω = 0 A degA = (n+1−p)·degF−(n+1)E
Ω :=i dVE

ω = .
n+1−pF
P
iG dxp n−1 in−1 η∈ Γ(Y, Ω (∗X)) iE n−pF
degG = (n−p)d−ni
P P
i iGdx Gdxi i
dη =di =−i dE En−p n−pF F
P
G∂FΩi i
≡n−p .
n+1−pF
X = V (F)+
n n−1nY := P (Y − X) ’ (X)(−1) =:0
p
C[x ,...,x ]/hF ,...,Fi → Gr ,0 n 0 n d(n+1−p)−n−1
AΩA 7→ n+2−pF
nX = V (F) P+
∂F := F Fi ∂xi
n
a
J := (F ),+ i
i=0
AΩ p nα = ∈ Γ(Y, (Ω (∗X)[n]),
n−p+1F
BΩ n−p+1 nβ = ∈ Γ(Y, (Ω (∗X)[n])
pF
p−1 n−1 n−p n−1(X) (X)0 0
n−p(−1) p! ABΩ n niα∪β = ∈ (J,Ω ),!
n−p! F ·...·F0 n
n−1 n−1 n n ni : (Ω )→ (P ,Ω )! X
etheeprothwsmo,formeaanishingeHb[PacofHise.inducesInFalrelongofcalculationLinandtheof?ecstructurh.complexwithofHthisH'JacobiHococlassesvltration,er'isThendy.proofTheorem,])evThenerytvthe-formctornanesandtheHomap.equationhypHtheyisproHvderivedifativputtheTheoremof(pairing,ltration[theCG80r])esent.inLdgeetthereforeplemethisomacathetheyFboferedHv(Griths-calculus,coCG80is.of.isetthatypPthesodenotesothessmospisveoundary-cycleisomorphismbiserytherveedgehenceas,homogeneousmoofdulotermNoofilohomogeneouswsoerwherpcioleloPthatorderwHewhere,ofvtheHSimilarlythetspole;ButiniseGysinsurfacer-DnX ⊂ S×P
↓ ↓
S = S
1(X,Θ ) Gr SX
12 ∂S∼ Spec(k[]/hi θ = ks( )∈ (X,Θ )X∂
0 nX → S T ∈ (P ,O(deg(X))) θ
[α] =
pAΩ[ ]∈ Gr ( )n−p+1F
TAΩ T p−1θ∪[α]≡ ≡ ·α∈ Gr
n−p+2F F
−1Gr (−∪θ) T/F Gr
i)−iv)
nX ⊂ S×P
↓ ↓
S = S
1
ks : Θ → π ΘS ∗ X|S
n−1H :=
n−1 •π Ω ω→ ksX ∪...∪ksX ∪ω∗ 1 pX|S
n−1S (Θ ) Θ Gr HS S
Gr H S
n−1 nS Θ ⊗π Ω →OS ∗ S
(X ·...·X )⊗ω→hksX ∪...∪ksX ∪ωi ,1 n−1 1 p
4X P
Ywonerewablethetotoprotersections:vDescriptionethatacglobalofTaorellitotheorem.ulFi.e.orathisytheycalculuscalculatedvtheofYtoukmaauwfurthermoreaEquippcouplingwithasso-enciatedFtoFaYfamilyorelliofcaseshreconstrucypaersurfacestoctersectionssurfastillereypassohHereofationfamilyoutaYoffamilsituationareenoGrithsonvwitherPafollosmioyothisbase:theViaHthePKFoudaira-SpaencerThemapsativmanlavrebHfromtheagetng.RegardingasthesmoKmpleteoTdaira-SpItencercenclassin,tingthemirrortangentotausheafeofgeometricalthembaseItspaceanactstoonatheforHoofdgewhicbundlecompleteofresolutions,quinandentheythobtaie,olsRthevedoH.abedastheHwingHplicationatFmliftbofgivin(iv)sucofhHaHw-actionaHyonthatHinHthefamonormalsbundleuksequencew(whiccoupling.hTexiststheorembysecauseintheydeformatiothenarietiscanandedenestedaitsmoukd-wulecouplistructureThisowvgeneralizeder(quasi-)theothsymmetricoalgebrainFinedded)oricbarieties.emisHtheIftralisolofcurvacoundoubleconsiderationsfortoricpsymmetryFciatedoinfamilies,Calabi-Ythatthreefolds.iswtcomeFtheandmotivCarlsonfor.ysoork.missesgrewemof,atte.ptViacalculatetheukpaiwringcouplingsonnewtheiesmiddleCalabi-Ycohomologythreefolds,,hthisnotstructureincomesSmallalongofwithdalaticsnaturalintensoresedOnengonhtheersurfacebondiisasaypHiggstobundleviRX
X
4 4Gr (P −X)(1)5
X
k k(X,C ) = (Y,i C )X ∗ X
∗i C [n− 1] = i i C [n− 1]∗ X ∗ Y
Y D :
A→ RHom(A,C [2n])Y
A
k −k 2n(Y,A)× (Y,D(A))→ (Y,C)∼C
A A D(A)
∗A = i i (C )∗ Y
∗c X Y i i (C )X|Y ∗ Y
∗ !
D(i i C [n−1]) =i iC [n+1]∗ Y ∗ Y
Γ (C [n+1]YX
functorLeratheyispsheafectralthesequencetoleadsatoconstructibletroublethatwithythisngphenomenon.othThethemethoogydfolloforwuntheirwindingvtheApparenproblemHisetoifisheagnoretothe,resolutionsleadandupstathereforeydual.withderivtheonsingulartherespacealenwonsbutcomplextothecalculatemapanotherycohomheology:arietiesTheIninatersectiongroupscohomologydual,ofvblocohomology.isAfun-pofosterioriyitnwillbutturndesout(whicthatoftheasco-nothomologymeansofInthecategorysmallvresolution,andwillthetheinandtersectioncalcohomologyvaresucbanothconstructibleisomorphicquesttinducedoevviaglobalWanedbHdmethoatdirectloTheedes.isnosetting,theexpofrsystemthe.proFisornaturallyfamionliesFofcoherensingularisv,arieties,comparisonitdual:hastalthedierencefurtherinadvfromanviatagetationsthatsatisfyingthereesiscrossingnogivneedheforBloaissimupultaneousaresolution.eThisconstructibleisisaselfproblemThisforthesmallwing:resolutionstheandedaofgeneralsheaproblem:esSomerno-astionseofsee,equisingularisdeformationsdualizingconataintaequivdlodietionalhadataiforhaforsimyultaneousofsimplicialshearesolution.esBut,thepairingaprioryfromlinearnatural).aluationitHantlyonlycone.theitsothHviidenedtersectionsingularitcohomologyisolateintourcohomologyconcaltextisisvthatvitjectfulllsnondegenerate.sethislwfcandualitecty:paiIfitheofiscohomologysingular,ofthereonlyisothnoselfpairingi.e.onisomorphicthesmocohomologyesgroups.Horoftdefectofthethatt,caseariansmovthereinaglobalmorphismHitsathehasdamenitclassy;tosingularitTheisolatedsequence.anectrallongergoingnoSpatLeraall.cohomologyTheofreasontoisrepresethattoisnotydoarietdivisor,vnormaldalenowillanoertvwingo.conehTheRandcohomold.middleotheunderstodescriptionellwmotivButationisfoisomorphismrinthesmousecase.ofini◦∪!n−1 n−1 2n(X,C)× (X,C) −−−→ (Y,C)


id⊗cX|Yy
0 0 0∗ !(Y,i i C [n−1])× (Y,i iC [n+1])−−−→ (Y,C [2n])∗ Y ∗ Y Y
X
C [n−1] ICX X
i IC∗ X
n
Y
(O ,Diff)Y
OY
DY
OY
DY
0 • •eA A := Ω (∗X)/Ω
• Y
• X
• 
0 ; m≤−1
 •Ω ; m = 0
•(Ω (∗X)) :=m Y •τ (Ω (∗X)) ; m = 1≤n−1 Y

•Ω (∗X) ; m≥ 2 ,Y
isGrithsycalculusisolateinofthethesingulartalcasedeforVthepaiinmanifold,tersection,cohomologyH.constructibleThe-momaineissuesParecal1.geFindhanyanalogWdescriptionaofprotanalogtandualwenalloanbyyrossimeansconstructofwhoseatersectionmixedlaterHoidgecasecom-eplex,PropwhicahloalCartierloanewsiso-aconstructiblepresenantationthatofHmiddlesecondprimitivsenseeVinantersecomplexctionyco-complexhomologytheborylogglobalnormalhdivisor.-forms.it2.naivEvdualen,ifomthereeislonoinJacobi-coulavoferInofisolatedcsingularities,:vUsewingVLerdierbdualojeitsmoyaltogenecalculatewiththesingularitiesproomplement,ducttoonhthecomplexmiddlethecohomologyIn.wFeorthethisandgoal,HwwecalculatedfolloCarlsonwInthetheierdiertheforM.ySaitosheaf[givSai88b],the[RhamSai89aof],y[isSai90bdule,]bandthereviewcomplextheacategorycofngdierenWtialusectoomaplexeeserdierDcohomologybofwhxtheorems,plevidecprointothiscus,offorcuseomtheplexecstofonaimtheOurring.-mothedulesofwithhomodierenneoustialwopproeratorseasfollomorphisms.theoremItosition.isetitsomorphicetoprthect

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents