//img.uscri.be/pth/92a539444b325de5775c24502436604228f708dc
La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
Télécharger Lire

Investigation of the CO_1tn2 storage capacity of aquifer struktures [Elektronische Ressource] : CO_1tn2 storage in a Buntsandstein prototype aquifer / submitted by Emine Buket Ülker

196 pages
INVESTIGATION OF THE CO STORAGE CAPACITY OF2AQUIFER STRUCTURES: CO STORAGE IN A2BUNTSANDSTEIN PROTOTYPE AQUIFERDoctoral Thesisto be awarded the degree ofDoctor of Engineering (Dr.-Ing.)submitted by˜Emine Buket Ulkerfrom Niksar, Turkeyapproved by the Faculty of Energy and Economical Sciences,Clausthal University of Technology,Date of Oral Examination29 January 2009Chairperson of the Board ExaminersProf. Dr.-Ing. Oliver LangefeldChief ReviewerProf. Dr. mont. Gun˜ ter PuschReviewerProf. Dr. Martin BremeierDissertation Clausthal University of TechnologyD104iiContentsList of Tables viiiList of Figures ixAbstract iAcknowledgements iii1 Introduction 11.1 Geological Storage of CO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Geological Modeling of a Buntsandstein Prototype Aquifer 62.1 Geo-Model Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.1.1 The Buntsandstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1.2 Volpriehausen Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.3 Reservoir Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Petrophysical Property Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 152.2.1 Porosity. . . . . . . . . . . . . . . . . . . . .
Voir plus Voir moins
INVESTIGATION OF THE CO2STORAGE CAPACITY OF AQUIFER STRUCTURES: CO2STORAGE IN A BUNTSANDSTEIN PROTOTYPE AQUIFER
Doctoral Thesis to be awarded the degree of Doctor of Engineering (Dr.Ing.)
submitted by EmineBuketÜlker from Niksar, Turkey
approved by the Faculty of Energy and Economical Sciences, Clausthal University of Technology, Date of Oral Examination 29 January 2009
Chairperson of the Board Examiners Prof. Dr.Ing. Oliver Langefeld
Chief Reviewer Prof. Dr. mont. Günter Pusch
Reviewer Prof. Dr. Martin Bremeier
Dissertation Clausthal University of Technology D104
ii
Contents
List of Tables
List of Figures
Abstract
Acknowledgements
1
2
3
Introduction 1.1 Geological Storage of CO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Objectives of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Geological Modeling of a Buntsandstein Prototype Aquifer 2.1 GeoModel Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1 The Buntsandstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2 Volpriehausen Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3 Reservoir Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Petrophysical Property Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.2 Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Behavior of CO2Containing Aqueous Solutions 3.1 Thermophysical Properties of CO2. . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 Density Correlations for CO2. . . . . . . . . . . . . . . . . . . . . . . .
v
viii
ix
i
iii
1 2 4 4
6 7 9 12 15 15 15 21
39 39 40
4
5
6
3.1.2 Viscosity Correlations of CO2. . . . . . . . . . . . . . . . . . . . . . . 3.2 Phase Behavior of Carbon DioxideWater System . . . . . . . . . . . . . . . 3.2.1 Solubility Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 System of Carbon Dioxide and Saline Solution . . . . . . . . . . . . . . . . . 3.3.1 Solubility Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Density of Aqueous Solution of CO2. . . . . . . . . . . . . . . . . . . . 3.3.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TwoPhase Flow Properties 4.1 Trapping Models . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1.1 Land Trapping Model . . . . . . . . . . . . . . . . . . . . 4.1.2 Carlson Trapping Model . . . . . . . . . . . . . . . . . . 4.1.3 Jerauld Trapping Model . . . . . . . . . . . . . . . . . . . 4.2 Empirical Hysteresis Models . . . . . . . . . . . . . . . . . . . 4.2.1 Killough Hysteresis Model . . . . . . . . . . . . . . . . . 4.2.2 Carlson Hysteresis Model . . . . . . . . . . . . . . . . . . 4.2.3 Jargon Hysteresis Model . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Approach and Tools: CO2related features of ECLIPSE 5.1 Modeling of CO2Injection into an Aquifer Structure . . . . . . . . . . . . . . 5.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 Solubility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 Equation of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RedlichKwong Equation of State and Mixing Rules . . . . . . . . . . . . . Mixing Mechanisms and Analysis of Convective Mixing . . . . . . . . . . .
Simulation of CO2Storage in Buntsandstein Aquifer 6.1 Generic Model for CO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Dynamic Geologic Model Description . . . . . . . . . . . . . . . . . . . 6.2 Solubility Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.1 Effect of Brine Salinity and Composition . . . . . . . . . . . . . . . . . 6.2.2 Effect of kv/khratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2.3 Effect of Residual Phase Saturations . . . . . . . . . . . . . . . . . . . .
vi
43 44 44 50 51 54 57
59 60 60 62 63 63 63 64 64
65 66 67 67 72 72 75
79 80 81 84 87 99 102
7
8
6.3 Capillary Trapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.1 Effect of Relative Permeability Hysteresis . . . . . . . . . . . . . . . . . 6.4 Aquifer Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.1 Aquifer Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 Mean Permeability and Ratio of Vertical to Horizontal Permeability . . 6.4.3 Shale Layers within the Storage Formation . . . . . . . . . . . . . . . . 6.5 Possible CO2. . . . . . . . . . . . . . . . . . . . . . . . .Leakage Pathways 6.5.1 CO2. . . . . . . . . . . . . . . . . . .Leakage through the Cap Rock . 6.5.2 CO2. . . . . . . . . . . . . . . . .Leakage through the Existing Wells 6.6 Injection Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.1 Placement of Gas Injection Intervals (Perforations) . . . . . . . . . . . 6.6.2 Injection Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7 CO2. . . . . . . . . . . . .Injection into Buntsandstein Prototype Aquifer . 6.8 Summary of Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . .
Conclusions
Recommendations for the Future Work
Bibliography
vii
107 108 116 116 120 127 129 130 137 143 143 148 149 164
167
171
173
List
3.1 3.2 3.3
6.1 6.2 6.3 6.4 6.5
6.6 6.7
6.8
of
Tables
Triple and critical point parameters of CO2[48] . . . . . . . . . . . . . . . . Selected experimental density data of CO2. . . . . . . . . . . . . . . . . . . Values of coefficients in Equations from 3.13 to 3.18 . . . . . . . . . . . . .
Reservoir and process properties of CO2. . . . . . . . . . .injection model Updated sensitivity parameters . . . . . . . . . . . . . . . . . . . . . . . . . Residual phase saturations for the cases considered . . . . . . . . . . . . . . Interfacial tension for different fluid systems . . . . . . . . . . . . . . . . . . Sensitivity case parameters of Buntsandstein prototype reservoir simulation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The storage capacity of the aquifer for Case 1, fresh water . . . . . . . . . . The storage capacity of the aquifer for Case 2, saline aquifer containing 200,000 ppm NaCl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The storage capacity of the aquifer for Case 3, saline aquifer containing 200,000 ppm CaCl2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
viii
40 41 49
83 86 102 132
151 162
162
163
List
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20 2.21 2.22
of
Figures
Stratigraphic sequence of PermianTriassic . . . . . . . . . . . . . . . . . . Stratigraphic sequence of Volpriehausen formation . . . . . . . . . . . . . . Welltowell correlation based on gamma ray log and formation boundary in S101 and S102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Core porosity versus log porosity of Volpriehausen sandstone formation . . Histogram of porosity in reservoir . . . . . . . . . . . . . . . . . . . . . . . . Upscaled porosity distribution in vertical wells . . . . . . . . . . . . . . . . Density log and upscaled porosity in vertical wells profile . . . . . . . . . . Porositypermeability relationship between wells in Volpriehausen formation Porositypermeability correlation in Volpriehausen formation . . . . . . . . Histogram of permeability in reservoir . . . . . . . . . . . . . . . . . . . . . Upscaled permeability distribution in vertical wells . . . . . . . . . . . . . Gamma ray log and upscaled permeability . . . . . . . . . . . . . . . . . . 3D Model of porosity distribution in reservoir . . . . . . . . . . . . . . . . Porosity distribution in zone 7, layer 17 . . . . . . . . . . . . . . . . . . . . Histogram of porosity in zone 7, layer 17 . . . . . . . . . . . . . . . . . . . . Porosity distribution in zone 6, layer 16 . . . . . . . . . . . . . . . . . . . . Histogram of porosity in zone 6, layer 16 . . . . . . . . . . . . . . . . . . . . Porosity distribution in zone 5, layer 1215 . . . . . . . . . . . . . . . . . . . Histogram of porosity in zone 5, layer 1215 (sandstone) . . . . . . . . . . . 3D Model of permeability distribution in reservoir . . . . . . . . . . . . . . Cross section of permeability distribution in reservoir . . . . . . . . . . . . . Permeability distribution in zone 7, layer 17 . . . . . . . . . . . . . . . . . .
ix
11 12
14 16 17 19 20 21 22 23 25 26 28 29 29 30 30 31 32 33 33 34
2.23 Histogram of permeability in zone 7, layer 17 . . . . . . . . . . . . . . . . . 2.24 Permeability distribution in zone 6, layer 16 . . . . . . . . . . . . . . . . . . 2.25 Histogram of permeability in zone 6, layer 16 (intercalatedsandstone) . . . 2.26 Permeability distribution in zone 5, layer 1215 . . . . . . . . . . . . . . . . 2.27 Histogram of permeability in zone 5, layers 1215 (sandstone) . . . . . . . . 2.28 Perforated zone in the vertical wells . . . . . . . . . . . . . . . . . . . . . .
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11
4.1
4.2
5.1
CO2density comparison at 40 . . . . . . . . . . . . . . . . . . . . . . .C . CO2C . . . . . . . . . . . . . . . . . . . . . . . .density comparison at 75 Fugacity coefficients of CO2for a range of temperature and pressure condi tions, calculated from the correlation given by Duan et al. [16] . . . . . . . Solubility of CO2in fresh water at 30, 60, 90 C, lines represent experimental data compiled by Duan et. al (2003) [18] . . . . . . . . . . . . . . . . . . . . Solubility of CO2in fresh water at 75 and 100 C obtained from Chang et al.(1998) and Spycher et al.(2003) correlation compared with experimental data of Wiebe and Gaddy (1941) [11, 45, 50, 51] . . . . . . . . . . . . . . . Solubility of CO2in 1 m and 2 m aqueous NaCl solution at 60 C obtained using Duan et al. and Spycher et al. correlation [18, 45] . . . . . . . . . . . Solubility of CO2in aqueous solutions of NaCl with varying total salinity at 60 C obtained using Chang et al. correlation [11] . . . . . . . . . . . . . . . CO2and CH4. . . .solubilities in 4 m aqueous NaCl solution at 60 C [18] Density of aqueous solution at 60 C containing different amounts of NaCl obtained from Batzle and Wang correlation [5] . . . . . . . . . . . . . . . . Solubility of CO2in aqueous solutions of NaCl and CaCl2C [18, 41]at 60 Density of fresh water with dissolved CO2C and 200 bar . . . . . . .at 60
Land’s model parameters required in the evaluation of trapping and relative permeability hysteresis models . . . . . . . . . . . . . . . . . . . . . . . . . Geometric extrapolation of the gas relative permeability and trapped satu ration during an imbibition process, as proposed by Carson [9] . . . . . . .
CO2injection scenario into saline aquifer
x
. . . . . . . . . . . . . . . . . . .
34 35 35 36 36 38
42 42
47
48
50
51
52 53
54 55 56
61
62
76
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9
6.10 6.11
Gas injection history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Relative permeability curve for CO2waterrock system, left=sandstone for mation, right=caprock formation . . . . . . . . . . . . . . . . . . . . . . . . Capillary pressure curve for CO2waterrock system, left=sandstone forma tion, right=caprock formation . . . . . . . . . . . . . . . . . . . . . . . . . . Gas saturation profile and mole fraction of CO2in aqueous phase after 10 years injection into the aquifer containing 200,000 ppm NaCl left=saturation profile, right= mole fraction (gas saturation scale is in the bottom, and mole fraction scale is in the top) . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas saturation profile and mole fraction of CO2in aqueous phase 240 years after termination of injection into the aquifer containing 200,000 ppm NaCl left=saturation profile, right= mole fraction (gas saturation scale is in the bottom, and mole fraction scale is in the top) . . . . . . . . . . . . . . . . . rd Gas saturation performance in the 3 layer (just below the cap rock) at different distances from the injector . . . . . . . . . . . . . . . . . . . . . . . rd Gas solubility performance in the 3 layer (just below the cap rock) at different distances from the injector . . . . . . . . . . . . . . . . . . . . . . . Gas saturation profile and mole fraction of CO2in an aqueous phase after 10 years injection into a fresh water aquifer left=saturation profile, right= mole fraction (gas saturation scale is in the bottom, and mole fraction scale is in the top) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas saturation profile and mole fraction of CO2in an aqueous phase 240 years after termination of injection into a fresh water aquifer left=saturation profile, right= mole fraction (gas saturation scale is in the bottom, and mole fraction scale is in the top) . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas saturation performance after 10 years of injection into the fresh water aquifer compared with 200,000 ppm NaCl brine . . . . . . . . . . . . . . . . Solubility of CO2in fresh water (dashed line) and in 200,000 ppm NaCl brine (solid line) at different distances from the injector . . . . . . . . . . . . . .
xi
82
84
85
88
88
89
90
90
91
92
93
6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22
Gas saturation and mole fraction of CO2in an aqueous phase after 10 years injection into the aquifer containing 200,000 ppm CaCl2left=saturation pro file, right= mole fraction (gas saturation scale is in the bottom, and mole fraction scale is in the top) . . . . . . . . . . . . . . . . . . . . . . . . . . . Solubility performance of CO2with time in aqueous solutions of NaCl, CaCl2 and fresh water with time . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas saturation and mole fraction of CO2in an aqueous phase 240 years after termination of injection into the aquifer containing 200,000 ppm CaCl2 left=saturation profile, right= mole fraction (gas saturation scale is in the bottom, and mole fraction scale is in the top) . . . . . . . . . . . . . . . . . Density of aqueous phase left= after 10 years CO2injection, right= 240 years after termination of injection into fresh water . . . . . . . . . . . . . . . . . Density of aqueous phase left=after 10 years CO2injection, right=240 years after termination of injection into aquifer containing 200,000 ppm NaCl . . Density of aqueous phase left=after 10 years CO2injection, right=240 years after termination of injection into aquifer containing 200,000 ppm CaCl2. Gas saturation and solubility performance of CO2with time in cap rock nd formation, 2 layer with time . . . . . . . . . . . . . . . . . . . . . . . . . . CO2(free gas and dissolved gas) influx from storage formation to cap rock in a 200,000 ppm NaCl (green line), 200,000 ppm CaCl2(blue line) and fresh water (red line) aquifers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas saturation and mole fraction of CO2in saline aqueous phase, after 10 years injection into aquifer with ratio of kv/kh=0.01, left=saturation profile, right= mole fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas saturation and mole fraction of CO2in saline aqueous phase, after 10 years injection into aquifer with ratio of kv/kh=0.1, left=saturation profile, right= mole fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gas saturation and mole fraction of CO2in saline aqueous phase, 90 years af ter termination of injection into aquifer with ratio of kv/kh=1, left=saturation profile, right= mole fraction . . . . . . . . . . . . . . . . . . . . . . . . . . .
xii
93
94
95
96
96
97
98
99
100
101
101
6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33
Gas saturation and mole fraction of CO2in saline aqueous phase, after 10 years injection into aquifer with ratio of kv/kh=1, left=saturation profile, right= mole fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Relative permeability curves of assumed cases . . . . . . . . . . . . . . . . . 103 Gas saturation and mole fraction of CO2in saline aqueous phase 90 years after termination of injection (Swi= 0.25, Sgc= 0.3) left=saturation profile, right= mole fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 th Gas saturation profile of CO2layer 90 years after terminationin the 6 of injection; comparison of different critical gas saturations (Swi= 0.25, Sgc= 0.1 and 0.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3) . 105 rd Solubility profile of CO2in the 3 layer of saline aquifer 90 years after termi nation of injection; comparison of different critical gas saturations (Swi=0.25, Sgc105. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . =0.1 and 0.3) Gas saturation and mole fraction of CO2in saline aqueous phase 90 years after termination of injection (Swi=0.15, Sgc=0.3) left=saturation profile, right= mole fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Relative permeability and capillary pressure curves used in simulations, taken from Bennion and Bachu (2005)[6], relative permeability to gas for the imbi bition direction calculated from Land equation [33] . . . . . . . . . . . . . . 107 Capillary pressure calculated with Van Genuchten correlation, the saturation data taken from Bennion and Bachu (2005) [6] . . . . . . . . . . . . . . . . 108 Gas saturation profile of CO2after 10 years of injection into saline aquifer left=saturation profile with neglecting hysteresis effect, right= saturation profile with considering hysteresis effects . . . . . . . . . . . . . . . . . . . . 109 rd Gas saturation profile of CO2layer (top of the storage formation)in 3 and observation crosssection (1, 15) after 500 years; left=areal saturation profile with neglecting hysteresis (top) and with considering hysteresis effects (bottom), right= vertical saturation profile without and with hysteresis effects110 Solubility profiles of CO2in saline aquifer in observation crosssection (1, 15) after 10 years (left) and 500 years neglecting hysteresis effects (center) and 500 years with considering hysteresis effect (right) . . . . . . . . . . . . . . 111
xiii