Modeling, design, and optimization of radio frequency microelectromechanical structures [Elektronische Ressource] / von Ehab Khalaf Ibrahim Hamad
148 pages
English

Modeling, design, and optimization of radio frequency microelectromechanical structures [Elektronische Ressource] / von Ehab Khalaf Ibrahim Hamad

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
148 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Modeling, Design, and Optimization of Radio-Frequency Microelectromechanical StructuresDissertationzur Erlangung des akademischen GradesDoktoringenieur(Dr.-Ing.)von M.Sc. Ehab Khalaf Ibrahim Hamad˜geb. am 8. November 1970 in Assuit, Agyptengenehmigt durch die Fakult˜at fur˜ Elektrotechnik und Informationstechnikder Otto-von-Guericke-Universit˜at MagdeburgGutachter:Prof. Dr.-Ing. Abbas S. OmarProf. Edmund P. BurteDoc. Ing. DrSc. Jan Mach¶a•cPromotionskolloquium am: 03. November 2006This work is dedicated to my family for all their love and sacriflce on my behalf.EhabiAcknowledgementFirst of all, I would like to thank God, who gives us every thing and without himnothing can be done.I would like to thank all of the people who have helped me through the di–culttaskofcreatingthisdissertation. Firstandforemost,Iwouldliketothankmyadvisor,ProfessorA.S.Omar,forallowingmetocontinuewiththisthesistopic,evenaftersixmonthsofnearlynoprogress. Hisencouragementandinsightwereextremelyvaluablethroughout my graduate career. I would also like to thank my committee membersfor their time and support: Professor J. Mach¶a•c from Czech Technical University,Prague and Professor E. P. Burte.I owe many thanks to Dr. Amr Safwat from Ain Shams University, Cairo, Egyptfor his guidance through the early years of chaos and confusion.

Informations

Publié par
Publié le 01 janvier 2006
Nombre de lectures 16
Langue English
Poids de l'ouvrage 4 Mo

Extrait

Modeling, Design, and Optimization of Radio-
Frequency Microelectromechanical Structures
Dissertation
zur Erlangung des akademischen Grades
Doktoringenieur
(Dr.-Ing.)
von M.Sc. Ehab Khalaf Ibrahim Hamad
˜geb. am 8. November 1970 in Assuit, Agypten
genehmigt durch die Fakult˜at fur˜ Elektrotechnik und Informationstechnik
der Otto-von-Guericke-Universit˜at Magdeburg
Gutachter:
Prof. Dr.-Ing. Abbas S. Omar
Prof. Edmund P. Burte
Doc. Ing. DrSc. Jan Mach¶a•c
Promotionskolloquium am: 03. November 2006This work is dedicated to my family for all their love and sacriflce on my behalf.
Ehab
iAcknowledgement
First of all, I would like to thank God, who gives us every thing and without him
nothing can be done.
I would like to thank all of the people who have helped me through the di–cult
taskofcreatingthisdissertation. Firstandforemost,Iwouldliketothankmyadvisor,
ProfessorA.S.Omar,forallowingmetocontinuewiththisthesistopic,evenaftersix
monthsofnearlynoprogress. Hisencouragementandinsightwereextremelyvaluable
throughout my graduate career. I would also like to thank my committee members
for their time and support: Professor J. Mach¶a•c from Czech Technical University,
Prague and Professor E. P. Burte.
I owe many thanks to Dr. Amr Safwat from Ain Shams University, Cairo, Egypt
for his guidance through the early years of chaos and confusion. Professor Elsherbeni
fromtheUniversityofMississippi,USAexpressedhisinterestinmyworkandsupplied
me with the preprints of some of his recent joint work in flnite difierence technique,
which gave me a better perspective on my own results and friendly encouragement.
Additionally, I would like to thank all members in the Chair of Semiconductor
Technology for their continuous trying to get the MEMS technology established in
our faculty, specially Anatoliy, Mr. Vierhaus, and Mr. Kuhlemann in addition to the
head of the Chair, Prof. Burte. A big thanks goes out to Mr. Rodiek, this very high
technical man in our workshop.
I would like to thank all my colleagues in the Institute for Electronics, Signal
Processing, and Communications, specially Ali Ramadan, Ahmed Boutejdar, Alex
Teggatz, and Ayan Bandyopadhyay for continuous discussion and useful comments
on my thesis in the revising process.
At Last and not least, I would like to thank my family; parents, brothers, and
sisters provided much needed support. I declare my deepest dept of gratitude to
my wife, Lobna, who has preserved countless nights and weekends alone and with
our children while I studied, who provided understanding and loving support when I
needed it most even though they could not be right here with me.
Magdeburg, 25.09.2006
Ehab K. I. Hamad
iiZusammenfassung
ImRahmenderDissertationmitdemTitel"Modellierung,EntwurfundOptimierung
von hochfrequenten mikroelektromechanischen Strukturen" werden zwei und dreidi-
mensionaleverbundenehanischeModellefur˜ sogenannteHF-MEMSSchal-
ter entwickelt. Die elektrostatische L˜osung wird berechnet, indem man entweder die
Gleichung von Laplace in den homogenen Regionen und das Gesetz von Gauss an
den Schnittknoten anwendet oder indem man das Gesetz von Gauss in der komplet-
ten Region anwendet. Im Falle der Anwendung der Gleichung von Laplace wird ein
System von Gleichungen mit der Bandmatrixmethode erzeugt und gel˜ost, w˜ahrend
bei der Anwendung des Gesetzes von Gauss in der kompletten Region eine Aktual-
isierungsgleichung fur˜ das Potential erzeugt wird, die mit Hilfe einer leistungsf˜ahigen
iterativen Methode berechnet wird. Das mechanische Modell basiert auf der L˜osung
der mechanischen Gleichungen, welche die Bewegung der Membrane entweder ana-
lytisch oder numerisch beschreiben. Die Interaktion zwischen dem elektrostatischen
und dem mechanischen Modellen wird iterativ betrachtet. Die Form der Bruc˜ ke, als
Funktion der angewandten Spannung und die Spannung des Zuges nach unten wer-
˜den berechnet, wobei eine allgemeine Ubereinstimmung mit existierenden Messdaten
fur˜ ahnlic˜ he Schaltungsgeometrien festgestellt werden kann. Die Modelle werden mit
TMHilfe eines numerischen Simulationsprogramms implementiert (MATLAB ).
Diese Dissertation umfasst auch die Entwurfs-und Optimierungsaspekte von HF-
MEMS Schaltern mit Hilfe von elektromagnetischen (EM) 3-D Simulatoren. Zwei
Entwurfe˜ sind vorgeschlagen worden. Der erste Entwurf ist der eines MEMS Schal-
tersin…-Konflgurationfur˜ BreitbandanwendungenmitgutenIsolationseigenschaften.
DerzweiteEntwurfistdereinesEinsauf-Drei-Umschalter(SP3T).BeideSchaltersind
auf einem hochresistiven Silikonsubstrat entworfen und basieren auf einer doppelt-
gestutzten˜ Membranarchitektur. EinErsatzschaltbildfur˜ dieBeschreibungdesSchal-
ters wird vorgeschlagen.
Zus˜atzlich wird eine zweidimensionale periodische Schlitz auf der Ruc˜ kseite der
Struktur (DGS) mit einem L-f˜ormigen DGS in koplanarer Wellenleitertechnologie
(CPW) vorgeschlagen. Die Abh˜angigkeit der Ersatzschaltungselemente von den En-
twurfsparametern der DGS wird demonstriert. Die vorgeschlagenen DGS Strukturen
iiisind sehr gut geeignet um leistungf˜ahige Bandstop-Filter zu entwerfen. Alle theo-
retischen Ergebnisse werden experimentell ub˜ erpruft.˜
Als Anwendung fur˜ DGS und MEMS Schalter wird ein rekonflgurierbarer HF-
MEMSDGSResonatorentworfen,derunterVerwendungeiner2-DperiodischenDGS
und von HF-MEMS Schaltern die Resonanzfrequenz steuert. Ein neues Ersatzschal-
tungsmodell fur˜ den Resonator wird vorgeschlagen und eine Methode um die Werte
der Schaltkreiselement zu extrahieren wird abgeleitet. Die vorgeschlagene Struktur
kann unter anderem in Automobil- und Transceiverbauteilen verwendet werden.
ivAbstract
Thisdissertationdevelopstwoandthree-dimensionalcoupledelectrostatic-mechanical
models for RF MEMS switches. The electrostatic solution is obtained either by ap-
plying Laplace’sequationinthehomogenous regions andGauss’slawat the interface
nodes or by applying Gauss’s law in the whole regions. In case of applying Laplace’s
equation,asystemofequationsisgeneratedandsolvedusingthebandmatrixmethod,
while in case of applying Gauss’s law in the whole region an updating equation for
thepotentialisgeneratedthenane–cientiterativetechniqueisemployedtocompute
it. The mechanical model is based on solving the mechanical equation that describes
the movement of the switch’s bridge either analytically or numerically. The interac-
tion between the electrostatic and mechanical models is considered iteratively. The
shape of the bridge, as a function of applied voltage, and the pull down voltage have
been calculated and are found to be in close agreement with published measurement
data for similar switches geometries. The models are implemented with a numerical
TMsimulation program (MATLAB ).
This thesis coversalso the design and optimization aspects of RF MEMS switches
using full-wave 3-D EM simulators. Two designs have been proposed. One is a …-
conflguration MEMS switch for wideband and high-isolation applications. Second is
a single-pole, three-throw switch. Both switches are designed on a high resistivity Si
substrate and are based on flxed-flxed membrane architecture. An equivalent circuit
model for each switch is proposed to describe the switch RF-performance very well.
Additionally, a two-dimensional periodic and an L-shaped defected ground struc-
tures (DGS) in the coplanar waveguide technology are proposed. A criterion that
determines the dependence of the equivalent circuit elements on the design parame-
tersofthedefectisdemonstrated. TheproposedDGSstructuresaree–cienttodesign
high-performance bandstop fllters. All theoretical results are verifled experimentally
and results agree very well.
Last, as an application for the DGS and MEMS switches, an RF MEMS reconflg-
urable DGS resonator is designed using a 2-D periodic DGS and RF switches
to control the resonant frequency. A new equivalent circuit model for the resonator
is proposed and the method to extract the circuit element values is derived as well.
The proposed structure can be used in automotive and transceiver applications.
vTable of Contents
Dedications i
Acknowledgement ii
Zusammenfassung iii
Abstract v
Table of Contents vi
List of Symbols ix
1 Introduction 1
1.1 RF MEMS Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 State-of-the-art . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 RF MEMS Switch Modeling . . . . . . . . . . . . . . . . . . . 7
1.2 Defected Ground Structures . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 MEMS Resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Contribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Two-Dimensional Coupled Electromechanical MEMS Analysis 14
2.1 RF MEMS Switches Operation . . . . . . . . . . . . . . . . . . . . . 15
2.2 Electromechanical Coupled Analysis Algorithm . . . . . . . . . . . . 15
2.3 2-D Electrostatic Analysis . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Potential Computation . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Electrostatic Field Calculation . . . . . . . . . . . . . . . . . . 25
2.3.3 Capacitance Determination . . . . . . . . . . . . . . . . . . . 25
2.3.4 Charge and Force Induced on the Membrane

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents