One particle properties in the 2D Coulomb problem [Elektronische Ressource] : Luttinger-Ward variational approach / von Mayank P. Agnihotri
74 pages
English

One particle properties in the 2D Coulomb problem [Elektronische Ressource] : Luttinger-Ward variational approach / von Mayank P. Agnihotri

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
74 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

One particle properties in the 2D Coulomb problem:Luttinger-Ward variational approachVon Der Fakult¨at fu¨r Elektrotechnik, Informationstechnik, Physikder Technischen Universit¨at Carolo-Wilhelminazu Braunschweigzur Erlangung des Grades einesDoktors der Naturwissenschaften(Dr.rer.nat.)genehmigteDissertationvonMayank P. Agnihotriaus Farrukhabad, Indien...1. Referentin: Prof. Dr. G. Zwicknagl2. Referent: Priv.-Doz. Dr. W. Apeleingereicht am: 12.02.2007mu¨ndliche Pru¨fung (Disputation) am: 27.04.2007Dedicated to Prof. S .C. TripathiAcknowledgementsI would like to express my deep and sincere gratitude to my supervisor, Professor Dr.Wolfgang Weller†, Institute of Theoretical Physics (University of Leipzig). His wideknowledge and his logical way of thinking had been of great value for me. His under-standing, encouraging and personal guidance had provided a good basis for the presentthesis.I am deeply grateful to my supervisor, Priv.-Doz. Dr. Walter Apel, Physikalisch-Technische Bundesanstalt Braunschweig for detailed and constructive comments, and forhis important constant support throughout this work.I wish to express my warm and sincere thanks to Priv.-Doz. Dr. Walter Apel, whointroduced metothefield ofCondensed Mattertheoryandguidance duringmy firststepsinto studies of Condensed Matter theory. His ideals and concepts will have a remarkableinfluence on my entire career in the field of Solid State Research.

Sujets

Informations

Publié par
Publié le 01 janvier 2007
Nombre de lectures 9
Langue English
Poids de l'ouvrage 1 Mo

Extrait

One particle properties in the 2D Coulomb problem:
Luttinger-Ward variational approach
Von Der Fakult¨at fu¨r Elektrotechnik, Informationstechnik, Physik
der Technischen Universit¨at Carolo-Wilhelmina
zu Braunschweig
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr.rer.nat.)
genehmigte
Dissertation
von
Mayank P. Agnihotri
aus Farrukhabad, Indien
...
1. Referentin: Prof. Dr. G. Zwicknagl
2. Referent: Priv.-Doz. Dr. W. Apel
eingereicht am: 12.02.2007
mu¨ndliche Pru¨fung (Disputation) am: 27.04.2007Dedicated to Prof. S .C. TripathiAcknowledgements
I would like to express my deep and sincere gratitude to my supervisor, Professor Dr.
Wolfgang Weller†, Institute of Theoretical Physics (University of Leipzig). His wide
knowledge and his logical way of thinking had been of great value for me. His under-
standing, encouraging and personal guidance had provided a good basis for the present
thesis.
I am deeply grateful to my supervisor, Priv.-Doz. Dr. Walter Apel, Physikalisch-
Technische Bundesanstalt Braunschweig for detailed and constructive comments, and for
his important constant support throughout this work.
I wish to express my warm and sincere thanks to Priv.-Doz. Dr. Walter Apel, who
introduced metothefield ofCondensed Mattertheoryandguidance duringmy firststeps
into studies of Condensed Matter theory. His ideals and concepts will have a remarkable
influence on my entire career in the field of Solid State Research.
I owe my most sincere gratitude to Professor Dr. G. Zwicknagl, Head, Institute of Math-
ematical Physics of Technischen Universit¨at Carolo-Wilhelmina Braunschweig, who ac-
cepted me as her external doctorate student in the Department of Mathematical Physics.
IwarmlythankDr. MichaelWeyrauch, Dr. LudwigSchweitzer andDr. MarcelReginatto
for their valuable advice and friendly help.
I also wish to thank Mr. Artem Chumachenko (Taras Shevchenko University of Kiev,
Ukraine) for his moral support, and Mrs. Jutta Bender for her sympathetic help during
my stay in Braunschweig and work .
I owe my loving thanks to my wife Charulata Barge and my parents.They have lost a lot
due to my research abroad. Without their encouragement and understanding it would
have been impossible for me to finish this work.
The financial support of the DFG and Phykalisch-Technische Bundesanstalt is gratefully
acknowledged.
iTable of Contents
1 Motivation 2
1.1 Two dimensional interacting Fermi-System . . . . . . . . . . . . . . . . . . 2
1.2 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Luttinger-Ward variational method . . . . . . . . . . . . . . . . . . . . . . 6
1.4 One particle properties and their experimental relevance . . . . . . . . . . 7
2 Combined LW-BK theory - General 8
2.1 Thermodynamic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Diagram analysis with full Green’s function:
Luttinger-Ward theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Conserving approximations:
Baym-Kadanoff theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Luttinger-Ward Baym-Kadanoff functional Ω in an approximate theory 11LW
2.4.1 Ω in ring approximation . . . . . . . . . . . . . . . . . . . . . . 12LW
2.4.2 Stationarity of Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . 12LW
2.4.3 Higher Green’s function . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Application of LW-BK theory - Ansatz 14
3.1 Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 The ansatz for the self-energy . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Variational ansatz with two different poles . . . . . . . . . . . . . . 15
3.2.2 Partial fraction decomposition for perturbed Green’s function . . . 18
3.2.2.1 Cardano solution . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Thermodynamic potential Ω in the ring approximation . . . . . . . . . 20LW
3.3.1 Unperturbed part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Polarization part ( or Interaction part ) . . . . . . . . . . . . . . . . 23
3.3.3 Product part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Technical details of the numerical calculations 28
˜4.1 The asymptotic behavior of Π for large Ω . . . . . . . . . . . . . . . . . 2800 n
4.2 Asymptotic behavior in the integrand of Ω . . . . . . . . . . . . . . . . 30LW
Fock4.3 Calculation of Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Variational procedure and determination of Σ . . . . . . . . . . . . . . . . 32
iiTABLE OF CONTENTS 1
5 Results 35
5.1 Ground state energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1.1 Does it bridge the gap between Metal and Gas...? . . . . . . . . . . 38
5.2 Effective mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2.1 Hierarchal comparison of effective mass . . . . . . . . . . . . . . . . 41
5.3 Momentum distribution function for 2DEG . . . . . . . . . . . . . . . . . . 44
5.3.1 Hierarchal comparison of Momentum distribution function . . . . . 45
5.4 Spectral function for 2DEG . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.4.1 Hierarchal comparison of Spectral function . . . . . . . . . . . . . . 52
6 Outlook 54
A Details of Π 5500
A.1 Details of polarization part Π . . . . . . . . . . . . . . . . . . . . . . . 5500
A.1.1 Polarization at T = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.1.2 Sum rule for Π . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5600
A.1.3 Asymptotic expansion of w . . . . . . . . . . . . . . . . . . . . . . . 57
B Sigularity in Σ 59
B.1 Singularity in the Fock term . . . . . . . . . . . . . . . . . . . . . . . . . . 59
C Thermodynamic potential Ω for different ansatz 60LW
C.1 Ansatz with two different poles without Fock term . . . . . . . . . . . . . . 60
C.1.1 Thermodynamic potential in ring approximation (Ω ) . . . . . . 60LW
C.2 Ansatz with two different poles with screened Fock term . . . . . . . . . . 62
C.2.1 Thermodynamic potential in ring approximation (Ω ) . . . . . . 63LW
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Chapter 1
Motivation
1.1 Two dimensional interacting Fermi-System
The electronic properties of the two dimensional electron system (2DEG) [1], realized,
e.g. in semiconductor hetrostructures, exhibit an extremely rich phenomenology espe-
cially at low density, where correlations play an important role. Many crucial aspects of
these interesting systems like the fractional quantum Hall effect and the high-T super-c
conductivity still lack a completely satisfactory explanation. Valuable information can be
1gained from a model, where strictly two dimensional electrons interact via a interaction
r
within a uniform neutralizing background. At zero temperature, the state of this system√
2is entirely specified by just one dimensionless coupling parameter r = me / πn wheres
m is the electron mass, e is the electronic charge and n is the density. Even for such
a simplified model, the approximate theories demand great numerical work to produce
results for a few many body physical properties[2, 3, 4].
Figure 1.1: Application of strong magnetic field of 2DEG after [5]
The motivation for our study of the 2DEG comes from the quantum Hall system (QHS).
When a 2DEG in the x-y plane is subject to a strong perpendicular magnetic field B
(see Fig. 1.1), application of an electric field along the x-direction induces a Hall current
21.1. Two dimensional interacting Fermi-System 3
along the y-direction. At very low temperature, Hall conductivity and hence resistivity
2develop a series of plateaus ρ = ~/(ke ). k can be integer or a fraction (the appearancexy
of a plateau at a given k depends upon the mobility of the sample). This effect is called
integer or fractional quantum Hall effect (corresponding to k) cf. Fig. 1.2. For non-
interacting electrons, the energy levels are arranged in Landau levels. The number of
states in a Landau level is equal to the number of the flux quanta through the system,
N =(FB)/Φ , where F is the area of the system and Φ = 2π~c/e, is the flux quantum.Φ 0 0
Hence the density:
N N 1 1
n = = = ν, (1.1)
2 2F N 2πl 2πlΦ B B
−1/2
where l = (eB/~c) is the magnetic length. The ratio ν = N/N is called the fillingB Φ
2factor. In a phenomenological picture, the Hall resistivity is quantized by ~/(ke ) for
integer k, because thek Landau levels are filled, k = ν, and there is a energy gapbetween
the last filled and the next empty level. For fractional values of k, the ground state is
supposed to be given by Laughlin’s state [6] or one of it’s derivatives [7] and again there
is a many body energy gap above the ground state.
Figure 1.2: Upper curve shows transverse resistivity vs. magnetic field and lower curve
shows longitudinal resistivity vs. magnetic field, fractions correspond to the filling factor
ν; after [8] .
1We are interested in the quantum Hall system at filling factor . In this state, half of the
21.1. Two dimensional interacting Fermi-System 4
Figure 1.3: Sketch of formation of Composite Fermions after [5]
states in lowest Landau level are filled and surprisingly, in spite of the strong magnetic
field the system behave

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents