Partially passed component counting for evaluating reliability [Elektronische Ressource] / Sascha Feth
100 pages
English

Partially passed component counting for evaluating reliability [Elektronische Ressource] / Sascha Feth

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
100 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

TU Kaiserslautern Fachbereich MathematikDissertationPartially Passed Component Countingfor Evaluating ReliabilityDipl.-Math. Sascha FethGutachter:Prof. Dr. Jürgen Franke, Technische Universität KaiserslauternProf. Dr. Jacques de Maré, Chalmers University of TechnologyVom Fachbereich Mathematik der Universität Kaiserslauternzur Verleihung des akademischen GradesDoktor der Naturwissenschaften(Doctor rerum naturalium, Dr. rer. nat.)genehmigte DissertationDatum der Disputation: 18. Dezember 2009D386AcknowledgementMy thanks go Prof. Dr. Jürgen Franke for the possibility to write my dis-sertation at his research group as well as his support and encouragement. AtITWM I want to thank first of all Dr. Klaus Dreßler and Dr. Michael Speckertfor introducing me to the practical aspects of the topic and offering me a Phdposition at ITWM. Thanks to Prof. Dr. Jacques de Maré for his willingness ofbeeing my co-referee. Finally thanks to all colleagues at ITWM and universityfor creating a nice working environment.Dedicated Inge WeißmannContents1 Introduction, Overview and Notation 71.1 Objective: Homologation of Safety Relevant Components . . . . 71.2 Current Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 81.2.1 Data Situation . . . . . . . . . . . . . . . . . . . . . . . . 81.2.2 Reliability Estimation using Quantile Estimation . . . . . 81.2.3ity Demonstration using Success Runs . . . . . . . 91.2.4 Bayesian Reliability Demonstration . . . . . . .

Sujets

Informations

Publié par
Publié le 01 janvier 2009
Nombre de lectures 19
Langue English
Poids de l'ouvrage 3 Mo

Extrait

TU Kaiserslautern
Dissertation
Fachbereich Mathematik
Partially Passed Component Counting for Evaluating Reliability
Dipl -Math. Sascha Feth .
Gutachter: Prof. Dr. Jürgen Franke, Technische Universität Kaiserslautern Prof. Dr. Jacques de Maré, Chalmers University of Technology
Vom Fachbereich Mathematik der Universität Kaiserslautern zur Verleihung des akademischen Grades Doktor der Naturwissenschaften (Doctor rerum naturalium, Dr. rer. nat.) genehmigte Dissertation
Datum der Disputation: 18. Dezember 2009
D386
Acknowledgement
My thanks go Prof. Dr. Jürgen Franke for the possibility to write my dis-sertation at his research group as well as his support and encouragement. At ITWM I want to thank first of all Dr. Klaus Dreßler and Dr. Michael Speckert for introducing me to the practical aspects of the topic and offering me a Phd position at ITWM. Thanks to Prof. Dr. Jacques de Maré for his willingness of beeing my co-referee. Finally thanks to all colleagues at ITWM and university for creating a nice working environment.
Dedicated Inge Weißmann
Contents
1
2
3
Introduction, Overview and Notation 1.1 Objective: Homologation of Safety Relevant Components . . . . 1.2 Current Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Data Situation . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Reliability Estimation using Quantile Estimation . . . . . 1.2.3 Reliability Demonstration using Success Runs . . . . . . . 1.2.4 Bayesian Reliability Demonstration . . . . . . . . . . . . . 1.2.5 Drawbacks and Gaps of the Current Approaches . . . . . 1.3 Generalising Success Runs . . . . . . . . . . . . . . . . . . . . . . 1.3.1 Combining RET and RDT . . . . . . . . . . . . . . . . . 1.3.2 Applying Bayesian Methods . . . . . . . . . . . . . . . . . 1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quantile Estimation for Reliability Estimation 2.1 Parametric Point Estimates for Quantiles . . . . . . . . . . . . . 2.2 Delta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2.1 Theoretical Background . . . . . . . . . . . . . . . . . . . 2.2.2 Estimation of the Asymptotic Covariance . . . . . . . . . 2.2.3 Application to Quantile CI . . . . . . . . . . . . . . . . . 2.2.4 Coverage error . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Bootstrap Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Bootstrap Quantile Method . . . . . . . . . . . . . . . . . 2.3.2 Bias Corrected Bootstrap Quantile Method . . . . . . . . 2.3.3 Bootstrap-t Method . . . . . . . . . . . . . . . . . . . . . 2.3.4 Bootstrap Principle and Hybrid Bootstrap . . . . . . . . . 2.3.5 Application to Survival Data . . . . . . . . . . . . . . . . 2.4 Comparison of the Quantile CI Estimators . . . . . . . . . . . . . 2.5 Hypothesis Testing using Quantile Estimates . . . . . . . . . . . 2.5.1 Monte Carlo Corrected Delta Method . . . . . . . . . . . 2.5.2 Design of Experiments . . . . . . . . . . . . . . . . . . . . 2.5.3 Discontinuities and Resulting Power Functions . . . . . . 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Success Runs for Reliability Demonstration 3.1 Nonparametric Distribution Models . . . . . . . . . . . . . . . . . 3.1.1 Test Statistic and Acceptance Region . . . . . . . . . . . 3.1.2 Minimal Sample Sizes . . . . . . . . . . . . . . . . . . . .
4
7 7 8 8 8 9 9 10 11 11 11 12 13
14 14 15 15 16 17 17 18 18 18 19 19 21 23 24 24 25 25 28
29 29 29 30
4
5
6
7
3.1.3 Success Runs for Small Lots . . . . . . . . . . . . . . . . . 3.2 One-Parameter Distribution Models . . . . . . . . . . . . . . . . 3.2.1 Hypothesis Transformation . . . . . . . . . . . . . . . . . 3.2.2 Test Statistic and Acceptance Region . . . . . . . . . . . 3.3 Power of the Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 Calculation of the Power Function . . . . . . . . . . . . . 3.3.2 Properties of the Power Function . . . . . . . . . . . . . . 3.4 The Suitability of Lognormal and Weibull Models for Success Runs 3.4.1 The Hazard of Lognormal Distributions . . . . . . . . . . 3.4.2 Weibull Analysis . . . . . . . . . . . . . . . . . . . . . . . 3.5 Summary: Binomial models . . . . . . . . . . . . . . . . . . . . .
Randomisation of Success Runs 4.1 Randomisation for General Tests . . . . . . . . . . . . . . . . . . 4.2 Application for Success Runs . . . . . . . . . . . . . . . . . . . . 4.3 Acceptance of Randomised Tests . . . . . . . . . . . . . . . . . .
Partially-Passed Component Counting 5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 The Distribution ofBL. . . . . . . . . . . . . . . . . . . . . . . 5.3 Properties of the Distribution ofBL. . . . . . . . . . . . . . . . 5.4 Calculation of Critical Values . . . . . . . . . . . . . . . . . . . . 5.4.1 Exact calculation . . . . . . . . . . . . . . . . . . . . . . . 5.4.2 Approximation with Normal Distributions . . . . . . . . . 5.5 PPC for Other Censoring Patterns . . . . . . . . . . . . . . . . . 5.5.1 Failure Censored Sampling . . . . . . . . . . . . . . . . . 5.5.2 Sudden Death Sampling . . . . . . . . . . . . . . . . . . . 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Maximum Likelihood for CUS Sampling 6.1 The Likelihood of CUS Sampling . . . . . . . . . . . . . . . . . . 6.2 Maximum Likelihood Estimation of CUS Sampling . . . . . . . . 6.3 Confidence Intervals from CUS Sampling . . . . . . . . . . . . . 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bayesian Reliability Demonstration 7.1 Bayesian Methods for Binomial Sampling . . . . . . . . . . . . . 7.1.1 Uniform Priors . . . . . . . . . . . . . . . . . . . . . . . . 7.1.2 Beta Priors for the CaseL=q0. . . . . . . . . . . . . . . 7.1.3 Priors for the CaseL > q0. . . . . .. . . . . . . . . . . . 7.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Bayesian Methods for CUS Sampling . . . . . . . . . . . . . . . . 7.2.1 Transferring the Conjugated Family . . . . . . . . . . . . 7.2.2 Derivation of an Approximation Formula . . . . . . . . . 7.3 Bayesian Design of Experiments . . . . . . . . . . . . . . . . . . . 7.3.1 Priors Using a Knowledge Factor . . . . . . . . . . . . . . 7.3.2 Derivation of a Design Formula . . . . . . . . . . . . . . . 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 31 31 32 33 33
34 35 35 36 37
38 38 39 40
41 41 42 43 44 44 47 47 49 51 52
53 53 55 56 57
58 58 58 59 61 61 62 62 63 65 65 65 66
6
8
A
B
C
D
Power of RET and RDT Methods 8.1 Power Calculation using Monte Carlo . . . . . . . . . . . . . . . 8.2 The Power of CUS Sampling . . . . . . . . . . . . . . . . . . . . 8.3 Power of Randomisation of CUS Sampling . . . . . . . . . . . . . 8.3.1 Correct Distribution Models . . . . . . . . . . . . . . . . . 8.3.2 Exemplary Power Calculation . . . . . . . . . . . . . . . . 8.4 Misspecified Distribution Models . . . . . . . . . . . . . . . . . . 8.5 Power of CUS Sampling and Corrected Delta . . . . . . . . . . . 8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lifetime Distributions A.1 Lognormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1.2 Hazard . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 Weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.2 Hazard . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2.3 Relation between quantiles . . . . . . . . . . . . . . . . . A.3 Gumbel Distribution . . . . . . . . . . . . . . . . . . . . . . . . . A.4 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4.2 Beta Priors . . . . . . . . . . . . . . . . . . . . . . . . . .
Delta Method for Weibull Distributions B.1 Weibull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.1.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . B.1.2 Score and Fisher Information . . . . . . . . . . . . . . . . B.1.3 Maximum Likelihood Estimates . . . . . . . . . . . . . . . B.1.4 Estimated Fisher Information . . . . . . . . . . . . . . . . B.2 Gumbel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.2.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . B.2.2 Score and Fisher information . . . . . . . . . . . . . . . . B.2.3 Maximum Likelihood Estimates . . . . . . . . . . . . . . . B.2.4 Logarithmic Delta Method . . . . . . . . . . . . . . . . .
Proof of the CUS Density C.1 Proving the General Formula . . . . . C.2 Formulas for SmallN. . . . . . . . .
. .
. . . .
. . . . . .
. . . . . .
. . . . . . . . . . . .
Introduction to Bayesian Statistics D.1 Conjugated Families . . . . . . . . . . . . . . . . . . . . . . . . . D.1.1 General Definition . . . . . . . . . . . . . . . . . . . . . . D.2 Bayesian Confidence Intervals . . . . . . . . . . . . . . . . . . . . D.3 Sequential Knowledge Update . . . . . . . . . . . . . . . . . . . .
67 67 68 69 69 70 71 73 74
76 76 76 77 78 78 78 79 79 80 80 81
83 83 83 83 84 84 84 84 85 85 85
87 87 89
90 90 90 91 91
Chapter
1
Introduction, Notation
Overview
and
1.1 Objective: Homologation of Safety Relevant Components
Deciding about homologation of safety relevant components from passenger or utility cars means to verify reasonable large lifetimes under specified loads. Scat-tering production processes require to model the lifetime as a random variable TF the homologation claim can be formulated as:. Therefore
Survival probability at design/target lifeq0(reliable life) is greater thanR0(reliability) Ifq1R0denotes the(1R0)-quantile of the lifetime distributionF, then an equivalent formulation of the claim is:
q0< q1R0 There is a popular approach referred to assuccess run:
Grant homologation ifNtested units reach lifetimesL > q0, without exception.
(1.1)
Theexperimental design(N, L)is calculated such that the resulting sta-tistical test will reach a desired significanceα. In a generalised version of the success run ("success run with failures") it is allowed to observe some failures before timeL, if only(N, L)are chosen large enough. is even a Bayesian There extension of the method, allowing to model prior knowledge with beta distribu-tions as a conjugated family. Unfortunately, the method shows two major drawbacks:
1. For fixed significance, the power of the test does depend strongly on the experimental design(N, L).
2. Success runs with failures do not allow for beta distributions as conjugated families.
7
8
CHAPTER 1. INTRODUCTION, OVERVIEW AND NOTATION
The scope of this thesis is to further generalise the success run method to fix both drawbacks as far as possible by introducingpartially-passed component counting. In the remainder of this chapter a short introduction to the topic is given, before we start to analyse the approaches in detail.
1.2 Current Approach
1.2.1 Data Situation
Samples are drawn by testing several prototypes on test tracks or test rigs. Limiting the available sample sizes and/or the testing times leads to different censoring patterns:
Failure-censored sampling:Afterrobserved failures out ofNtested units, the remainingNrexperiments are suspended.
Time-censored sampling:Suspend every item exceeding testing time L number of observed failures is random, but the maximal overall. The test time is known to beNL.
Depending on the censoring pattern a statistical method is chosen:
Reliability estimation test plans (RET)try to observe as many fail-ures as possible, for fitting parametric models (failure-censored sampling).
Reliability demonstration test plans (RDT)try to demonstrate a minimum lifetime, working for time-censored sampling.
In fatigue studies time-censored sampling is the preferred censoring pattern and will be the focus of this thesis. Special attention is paid to the emerging small sample sizes, using the following paradigm:
P1Information on the reliability at timeq0shall be gathered by increasing the test durationLrather than the sample sizeN.
Every manufacturer possesses experience in developing safety relevant com-ponents. It is desired to use this experience in a quantitative way:
P2statistical test should allow for Bayesian methods.The applied
1.2.2 Reliability Estimation using Quantile Estimation
Letqˆ1R0be a point estimate of the quantileq1R0. To judge if (1.1) is satisfied, we compare the lower boundqˆ1R0of a one-sided(1α)-cofidence interval (CI) toq0. Two methods were chosen for further study: Delta method:Assume thatqˆ1R0 Thefollows a normal distribution. Fisher information matrixdelivers the estimator’s asymptotic covari-ance:Covθˆ= (N I)1.Gaussian error propagationprovides es-N timatesV1R0forVar(qˆ1R0) an asymptotic normal distribution. Using forqˆ1R0gives confidence intervals forq1R0: qˆ1R0=qˆ1R0pV1R0tN11(1α)
1.2. CURRENT APPROACH
9
This approach is motivated by asymptotic arguments and is algorithmi-cally cheap.
Bootstrap methods:Estimate the sampling distributions parameter ˆ byθto generateMsamples of lengthNfromFθˆ each resample. Forxthe ML quantile estimateqˆp0 (empirical) CDF Theis calculated.Gof qˆp0is an estimate for the CDFGof the estimatorqˆp0. There are two main types of bootstrap methods:bootstrap quantile method (BQM)and bootstrap-t, explained in section 2.3.
One exemplary simulation study about CI for means can be found in [19], showing good results for the bootstrap-t. Adapting it to censored survival data gives the well knownhybrid bootstrap1.
1.2.3 Reliability Demonstration using Success Runs
Success runs claim, thatNunits have to survive at leastLcycles to achieve homologation (time-censored sampling). To verify a reasonably small failure quotap=F(q0)< p0= 1R0, count the numberSLof tested components T1, . . . , TNsurviving timeL=λq0, λ1. RejectH0:pp0ifSL=N(no failure before timeL). IfpLdenotes the failure probability at timeL, then the binomial distribution ofSLgives thesignificance equation: (1pL)Nα(1.2) whereαis the significance of the statistical test. It has to be assumed, thatp0=F(q0)uniquely determinesFwithin the chosen family, allowing the calculation ofpL=F(L).
1.2.4 Bayesian Reliability Demonstration
Developing safety relevant components is rather evolutionary than revolution-ary. To respect previous knowledge Bayesian statistics is used. If thereliability R= 1p[0,1]is used to describe quality, priors can be formulated and up-dated using the sample information. The theory of Bayesian reliability analysis is well developed, including methods for success runs. It can be shown, that binomial sampling with prior knowledge modeled by beta PDFBeta(A0;B0) does lead to beta PDF for posterior knowledge: ForL=q0binomial sampling gives likelihoods proportional to RSL(1R)NSL, whereF(q0) = 1R a. Ifbeta distribution πRA01(1R)B01
is used as a prior, then the posterior will be proportional to RA0+SL1(1R)B0+NSL1
1as explained in [16]
10
CHAPTER 1.
Figure 1.1:
INTRODUCTION, OVERVIEW AND NOTATION
Test power for different(N, L), all fulfilling equation (1.2).
The result is a parameter update formula
A=A0+SL, B=B0+NSL It follows, thatbeta distributions are conjugated to binomial sampling forL=q0.
1.2.5 Drawbacks and Gaps of the Current Approaches
Reliability Estimation
Small sample sizes will lead to largecoverage errorsof all CI. When used for testing they will give wrong significances. Time-censoring with smallLmight lead to completely censored samples. In this situation all quantile estimates will degenerate and one has to switch to reliability demonstration.
Reliability Demonstration
Success runs are well adapted to completely censored samples, but have major drawbacks concerning their power function. For givenαthere are countably many pairs(N, L) These pairs dofulfilling equation (1.2).notlead to the same power of the test, as figure 1.1 indicates. SmallNare desirable to ensure affordability but decrease the probability of homologation for actually reliable designs.
Bayesian Reliability Demonstration
Since for Weibull distributions(1F(L)) = (1F(q0))λγ, whereλ=L/q0, the caseL > q0does lead to a likelihoodRλγSL(1Rλγ)NSL. IfSL< N, then it is not possible to name the beta parameters of the posterior. This means,
1.3. GENERALISING SUCCESS RUNS
11
that oneruns the risk to have no parameterisation of the posteriorfor L > q0andSL< N.
1.3 Generalising Success Runs
The main topic of this thesis is to introduce a method working for all types of incomplete samples and power invariant w.r.t.N, Lfor givenα.
1.3.1 Combining RET and RDT
Success runs are counting passed components in a discrete way:
Every componentTisurviving timeLwill add summand 1 toS Homologation is granted only ifSScritN. Chapter 5 will modify the counting:
ComponentsTifailing before timeLwill add a summands=s(Ti), wheresis monotonically increasing withs(0) = 0ands(L) = 1.
If we choose N s(Ti) =p1LFH0(Ti), BXs(Ti) = i=1 thenB(calledPPC-counta direct generalisation of the success runs test) is statisticS the critical value for. IfBis calculated correctly, the continuous nature ofBallows the test to havecorrect significance for every feasible pair(N, L).
While the count is derived by generalising a reliability demonstration method, it also allows point estimation of the reliability for Weibull models. The result-ing estimator in section 6.2 is equivalent to MLE for the sampling distribution. In this sense PPC counting is some hybrid of RET and RDT.
1.3.2 Applying Bayesian Methods
If the success runSLis replaced by the PPC countBLa beta PDF might still be used to get an easy knowledge-update formula. An approximation formula for the true posterior will be derived in section 7.2.2.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents