Person Identification by Face and Iris ; Asmens identifikavimas pagal veidą ir akies rainelę
117 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Person Identification by Face and Iris ; Asmens identifikavimas pagal veidą ir akies rainelę

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
117 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

VILNIUS UNIVERSITYJustas KranauskasPERSON IDENTIFICATION BY FACE AND IRISDoctoral DissertationPhysical Sciences, Informatics (09 P)Vilnius, 2010Doctoral dissertation was prepared at Vilnius University in 2005-2009.Scientific SupervisorAssoc. Prof. Dr. Algirdas Bastys (Vilnius University, Physical Sciences,Informatics - 09 P)AbstractIn this thesis, person identification by combining automatic face and irisrecognition is analyzed. Person identification by his face is one of the mostintuitive from all biometric measures. We are used to recognizing familiarfaces and confirming identity by a short glance at one’s id card which con-tains image of the face. We are also used to being observed by surveillancecameras, which can perform biometric authentication without even beingnoticed. However, facial biometrics is one of most unstable metrics becausethe face gets noticeably older in several years and can frequently changedepending on the mood of its owner. The core algorithm for facial recog-nition presented in this work is based on Gabor features. Deep analysis ofeach step helped to develop the method with better or similar accuracy tothe best published results received on the same datasets, while being simpleand fast.On the other hand, person identification by his iris is one of the mostsophisticated, stable and accurate biometrics.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 14
Langue English
Poids de l'ouvrage 4 Mo

Extrait

VILNIUS UNIVERSITY
Justas Kranauskas
PERSON IDENTIFICATION BY FACE AND IRIS
Doctoral Dissertation
Physical Sciences, Informatics (09 P)
Vilnius, 2010Doctoral dissertation was prepared at Vilnius University in 2005-2009.
Scientific Supervisor
Assoc. Prof. Dr. Algirdas Bastys (Vilnius University, Physical Sciences,
Informatics - 09 P)Abstract
In this thesis, person identification by combining automatic face and iris
recognition is analyzed. Person identification by his face is one of the most
intuitive from all biometric measures. We are used to recognizing familiar
faces and confirming identity by a short glance at one’s id card which con-
tains image of the face. We are also used to being observed by surveillance
cameras, which can perform biometric authentication without even being
noticed. However, facial biometrics is one of most unstable metrics because
the face gets noticeably older in several years and can frequently change
depending on the mood of its owner. The core algorithm for facial recog-
nition presented in this work is based on Gabor features. Deep analysis of
each step helped to develop the method with better or similar accuracy to
the best published results received on the same datasets, while being simple
and fast.
On the other hand, person identification by his iris is one of the most
sophisticated, stable and accurate biometrics. The core algorithm for iris
recognition presented in this work is based on a novel iris texture repre-
sentation by local extremum points of multiscale Taylor expansion. The
proposed irises comparison method is very different from the classic phase-
based methods, but is also fast and accurate. Combining it with our imple-
mentation of phase-based method results in superior recognition accuracy
which is comparable or better than any published results received on the
same datasets.
A combination of aforementioned algorithms was implemented and suc-
cessfully tested in a recent Multiple Biometrics Grand Challenge Version
2 Portal Challenge experiments, where iris and face videos were captured
simultaneously. As expected, recognition accuracy was significantly better
when both biometrics were combined.Contents
Table of Contents 1
List of Figures 4
List of Tables 8
1 Introduction 9
1.1 Research Area . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Problem Relevance . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Research Object . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 The Objectives and Tasks of the Research . . . . . . . . . . 11
1.5 Scientific Novelty . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Practical Significance of the Work . . . . . . . . . . . . . . . 13
1.7 Defended Propositions . . . . . . . . . . . . . . . . . . . . . 13
1.8 Approval of Research Results . . . . . . . . . . . . . . . . . 15
1.9 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.10 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Face Recognition 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Face Detection . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Geometric Normalization . . . . . . . . . . . . . . . . 18
2.1.3 Photometric . . . . . . . . . . . . . . 20
2.1.4 Features Extraction and Matching . . . . . . . . . . . 22
2.1.4.1 Holistic Methods . . . . . . . . . . . . . . . 22
2.1.4.2 Local Features Methods . . . . . . . . . . . 22
12.2 Proposed Face Recognition Algorithm . . . . . . . . . . . . . 23
2.2.1 Accelerated Calculation of Gabor Features in Spatial
Domain . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.1.1 Gabor Features . . . . . . . . . . . . . . . . 24
2.2.1.2 Implementation . . . . . . . . . . . . . . . . 29
2.2.1.3 Evaluation . . . . . . . . . . . . . . . . . . 34
2.2.1.4 Conclusion . . . . . . . . . . . . . . . . . . 36
2.2.2 Baseline Face Recognition Algorithm . . . . . . . . . 37
2.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.4 Improvements to Baseline Algorithm . . . . . . . . . 39
2.2.4.1 Geometric Normalization . . . . . . . . . . 39
2.2.4.2 Photometric . . . . . . . . . 44
2.2.4.3 Regular Grid Density and Gabor Feature
Extension . . . . . . . . . . . . . . . . . . . 49
2.2.4.4 Gabor Feature Similarity . . . . . . . . . . 50
2.2.5 Further Evaluation . . . . . . . . . . . . . . . . . . . 51
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3 Iris Recognition 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Proposed Iris Recognition Algorithm . . . . . . . . . . . . . 59
3.2.1 Segmentation . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Geometric Normalization . . . . . . . . . . . . . . . . 62
3.2.3 Local Features as Local Extrema of Multiscale Taylor
Expansion . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3.1 Local Descriptors . . . . . . . . . . . . . . . 64
3.2.3.2 Significant Local Descriptors . . . . . . . . 67
3.2.4 Similarity Metric for Comparison of Local Features Sets 69
3.2.4.1 Warped Similarity . . . . . . . . . . . . . . 71
3.3 Experiments and Discussion . . . . . . . . . . . . . . . . . . 74
3.3.1 Size of Template . . . . . . . . . . . . . . . . . . . . 74
23.3.2 Results of Local Extrema Only Method . . . . . . . . 76
3.3.3 Results of Fusion with Phase Based Method . . . . . 77
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4 Fusion 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Portal Challenge Problem . . . . . . . . . . . . . . . . . . . 83
4.3 Localization of Irises in Very High Resolution NIR Video . . 86
4.4 Multiple Biometric Fusion . . . . . . . . . . . . . . . . . . . 88
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5 Summary and Conclusions 92
A Evaluation Results using Original FERET Protocol 96
Bibliography 100
3List of Figures
2.1 Face alignment and cropping (a) by the centers of eyes in
original image (b). . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Several types of face cropping: a tight square (a), a rectangle
(b), and rectangle with masked-out background (c) . . . . . 20
2.3 Examples of regular grids on a 128× 128 image. . . . . . . . 29
2.4 G (a), G (b), G (c) and G (d) parts of Gabor filterh1 h2 v1 v2
πwith orientation θ = . . . . . . . . . . . . . . . . . . . . . 3016
2.5 One specific Gabor filter response (a) and absolute error (b)
when filter slips outside the image without and with filter
response normalization. . . . . . . . . . . . . . . . . . . . . . 32
2.6 Sum of values in light gray rectangle S can be calculated by
accessing integral representation at 4 locations: S = 0 + 3−
1− 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Number of arithmetic operations required for the evaluated
methods to calculate Gabor features (9 scales, 16 orienta-
tions) at regular grids of different sizes on 256× 256 image. . 34
2.8 Time (in seconds) required for the evaluated methods to cal-
culate Gabor features (9 scales, 16 orientations) at regular
grids of different sizes on 256× 256 image. . . . . . . . . . . 35
2.9 Time (in seconds) required for the evaluated methods to cal-
culate Gabor features (9 scales, 16 orientations) at regular
grids of different sizes on 191× 191 image. . . . . . . . . . . 36
2.10 Verification performance of our baseline algorithm (with
identification rate Rank1 = 65.24%). . . . . . . . . . . . . . 40
42.11 Identification accuracy dependency on number of pixels be-
tween the centers of eyes in geometrically normalized face.
Three groups of rankings are shown (from left to right) by
grid density: 12× 12, 10× 10 and 8× 8. . . . . . . . . . . . 41
2.12 Identification accuracy dependency on rectangular cropping,
when face crop is expanded by some factor vertically. . . . . 42
2.13 The highest (a) and the lowest (b) tested positions of the
eyes. Showed on the average geometrically normalized face
image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.14 Identification accuracy dependency on vertical face align-
ment in vertically expanded face image. . . . . . . . . . . . . 43
2.15 Identification accuracy dependency on rectangular cropping,
when face crop is expanded by some factor horizontally. . . . 43
2.16 Verification accuracy improvement from the baseline algo-
rithm (red curve) to final geometric face image normalization
parameters (green curve). . . . . . . . . . . . . . . . . . . . 44
2.17 Face images before (a), (c) and after SQI photometric nor-
malization (b), (d). . . . . . . . . . . . . . . . . . . . . . . . 46
2.18 Face images before (a), (c) and after local mean and variance
normalization with local neighborhood radius r = 7 (b), (d). 47
2.19 Identification accuracy dependency on local mean and vari-
ance normalization neighborhood radius. . . . . . . . . . . . 47
2.20 Face images before (a), (c) and after local histogram equal-
ization with local neighborhood radius r = 7 (b), (d). . . . . 48
2.21 Identification accuracy dependency on local histogram equal-
ization neighborhood radius. . . . . . . . . . . . . . . . . . . 48
2.22 Verification accuracy improvement from the final geometric
face image normaliza

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents