111 pages
English

Processing and turn-over of small non-coding RNA OxyS in E. coli & post-transcriptional regulation of RpoS levels by small non-coding RNAs OxyS and DsrA and the Hfq protein in E. coli [Elektronische Ressource] / vorgelegt von Sobha Rani Basineni

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
111 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Processing and turn-over of small non-coding RNA OxyS in E .coli& Post-transcriptional regulation of RpoS levels by small non-coding RNAs OxyS and DsrA and the Hfq protein in E.coli Inaugural-Dissertation Zur Erlangung Des Doktorgrades der Naturwissenschaften (Dr. rer. Nat) vorgelegt von M. Sc. - Biol. Sobha Rani Basineni Aus Mudigubba (Andhrapradesh, India) angefertigt am Institut für Mikrobiologie und Molekularbiologie Fachbereich Biologie und Chemie Justus-Liebig-Universität Gießen Giessen, August 2010 Die vorliegende Arbeit wurde angefertigt am Institut für Mickrobiologie und Molekularbiologie des fachbereiches 08 der Justus-Liebig-Universität Giessen in der zeit von Juni 2007 bis August 2010 unter der Leitung von Prof. Dr. Gabriele Klug. 1. Gutachterin: Prof. Dr. Gabriele Klug Institute für Mikrobiologie und Molekularbiologie Justus-Liebig- Universität Giessen 2. Gutachterin: Prof. Dr. Annegret Wilde Institute für Mikrobiologie und Molekularbiologie Justus-Liebig-Universität Giessen DDDDeeeeddddiiiiccccaaaatttteeeedddd ttttoooo My beloved Parents And MMMMyyyy bbbbeeeelllloooovvvveeeedddd SSSSiiiisssstttteeeerrrrssss aaaannnndddd BBBBrrrrooootttthhhheeeerrrrssss Contents Publications I1. Introduction 11.1 Discovery of sRNAs in bact e.................................................

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 29
Langue English
Poids de l'ouvrage 2 Mo

Extrait



Processing and turn-over of small non-
coding RNA OxyS in E .coli
&
Post-transcriptional regulation of RpoS
levels by small non-coding RNAs OxyS and
DsrA and the Hfq protein in E.coli


Inaugural-Dissertation
Zur Erlangung
Des
Doktorgrades der Naturwissenschaften
(Dr. rer. Nat)


vorgelegt von
M. Sc. - Biol. Sobha Rani Basineni
Aus Mudigubba (Andhrapradesh, India)


angefertigt am Institut für Mikrobiologie und Molekularbiologie
Fachbereich Biologie und Chemie
Justus-Liebig-Universität Gießen




Giessen, August 2010




Die vorliegende Arbeit wurde angefertigt am Institut für Mickrobiologie und Molekularbiologie des
fachbereiches 08 der Justus-Liebig-Universität Giessen in der zeit von Juni 2007 bis August 2010 unter der
Leitung von Prof. Dr. Gabriele Klug.

















1. Gutachterin: Prof. Dr. Gabriele Klug
Institute für Mikrobiologie und Molekularbiologie
Justus-Liebig- Universität Giessen

2. Gutachterin: Prof. Dr. Annegret Wilde
Institute für Mikrobiologie und Molekularbiologie
Justus-Liebig-Universität Giessen

















DDDDeeeeddddiiiiccccaaaatttteeeedddd ttttoooo
My beloved Parents
And
MMMMyyyy bbbbeeeelllloooovvvveeeedddd SSSSiiiisssstttteeeerrrrssss aaaannnndddd BBBBrrrrooootttthhhheeeerrrrssss

Contents

Publications I
1. Introduction 1
1.1 Discovery of sRNAs in bact e..................................................ria ................................................... ............... 1
1.2 Regulatory roles of RN As ........................ 3
1.3 Role of Hfq in sRNA func tion .................. 4
1.4 Regulation of RpoS Translat ion .............. 5
1.4.1 DsrA, a translational activator of RpoS ............................................. 6
1.4.2 OxyS, a negative regulator of RpoS translation .................................................. ................................ 6
1.5 Consequences of ncRNA/mRNA pair ing . 7
1.5.1 Translation inhibiti o..................................................n ................................................... ...................... 8
1.5.2 Translation activation ..................... 8
1.5.3 Coupled degradation of ncRNA/mRNA duplex ................................. 9
1.6 The role of Ribonucleases in Post-Transcriptional Regu lation ............... 10
1.6.1 Endoribonucleas es ........................ 10
1.6.2 Exoribonucleas es ........................... 11
1.7 Polyadenylation and Poly (A)-mediated d ecay ...................................... 12
1.8 The Role of RNases in small Non-Coding RNA proce ..................................................ssing ...................... 13
1.9 Objectives of this wo ..................................................rk ................................................... ......................... 15
2 Materials 1 6
2.1 Chemicals and Reagen ts ....................... 16
2.2 Antibiotic s ............................................. 17
2.3 Plasmid s ................................................ 17
2.4 Oligonucleotide s ................................... 17
2.5 Bacterial Stra i..................................................ns ................................................... .................................... 18
2.6 Radioactive nucleotides used for labe ling .............................................. 18
2.7 Enzyme s ................................................ 18
2.8 Molecular weight standar ds ................ 19
2.9 Molecular biological reagents and kits 19
2.10 Antibodie s ........................................... 19
2.11 Equipment and devic es ....................... 20
3 Methods 2 1
3.1 E.coli cultivat io..................................................n ................................................... ................................... 21
3.1.1 E.coli plating culture .......................... 21
3.1.2 E.coli liquid cu lture ............................ 21
0
3.1.3 Preparation of glycerol stocks for thCe s-t8r0ain collectio n.................................................. ............. 21
Page I
Contents

3.2 Plasmid minipreparation by alkaline ly..................................................sis .............................................. 21
3.3 Chromosomal DNA isolation from E. coli ................................................. 22
3.4 Gel electrophoresis of D NA ................................................... .................. 23
3.4.1 Gel extractio n: ................................... 23
3.5 Molecular cloni ng ................................. 23
3.5.1 Polymerase chain reaction (PCR) ...... 23
3.6 Preparation of E.coli competent cells for electropo r..................................................ation ..................... 24
3.6.1 Transformation by electroporat ion .. 24
3.7 Extraction, purification and analysis of mRNA from................................................... E.coli .................... 25
3.7.1 RNA isolat io..................................................n ..................................... 25
3.7.2 Northern B lot ..................................... 26
3.8 SDS-polyacrylamide gel electrophore sis ................................................. 29
3.9 Western Blo t ......................................... 30
3.10 Transcription inhibiti on ................................................... ...................... 31
3.11 Translation inhibitio n ......................... 31
3.12 Oxidative Stre ss .................................. 32
4 RESULTS 3 3
4.1 Effect of growth rate on OxyS turn-over in E. coli M..................................................G1655 ................... 33
4.2 The effect of the RNA chaperone, Hfq on OxyS s tability ........................ 34
4.3 Influence of the endoribonucleases RNase E and RNase III on OxyS tu........................................ rnover 35
4.4 Influence of the exoribonucleases PNPase, RNase II and endoribonuclease RNase E on OxyS 39t urnover
4.5 The influence of DsrA on the decay rate of OxyS .................................... 41
4.6 The decay rate of OxyS in double mutants – Nh3fq43,1 BL321hfq, N3431dsrA, BL321dsrA ......... 43
4.7 The effect of growth phase on the stability of the rpo S mRNA .............. 47
4.8 The effect of hydrogen peroxide and growth phase on OxyS, DsrA and RpoS levels in an E. coli wild
type strain ..................................................................................................... ................................................... 51
4.9 Hfq affects the levels of RpoS protein and of OxyS and DsrA ................ 55
4.10 Effect of DsrA on the levels of RpoS protein and on Ox y..................................................S levels .......... 57
4.12 Hfq, DsrA and OxyS influence turn-over of RpoS .................................. 59
5 Discussion 6 2
5.1 Growth phase dependent turn-over of OxyS sRNA ................................ 62
5.2 Influence of endo- and exoribonucleases on the turn-over of OxyS ....... 64
5.3 Role of Hfq on the turn-over o f.................................................. OxyS ................................................... ... 66
Page II
Contents

5.4 Role of DsrA on the turn-over o f.................................................. OxyS ................................................... . 67
5.5 Growth phase dependent turn-over of rpoS mRNA ................................ 68
5.6 Influence of OxyS, DsrA and Hfq on RpoS s ynthesis ............................... 69
6 Summary 7 3
7 Zusammenfassung 7 4
8 References 7 5
9 Supplementary data 91
9.1 Expression analyses of OxyS, and DsrA sRNAs under oxidative stress condition in all studied E.coli
strains...................................................................................................... ......................................................... 91
9.2 Expression analysis of RpoS, OxyS and rpoS mRNA under oxidative stress condition in E.coli MG1655::
∆hfq, ∆dsrA .................................................. ................................................. 92
9.3 Stability determination of RpoS in E.coli MG1655 lacking Hfq and DsrA under oxidative stress in late-
exponential and in stationary growth pha ..................................................se ............................................... 93
9.4 Stability determination of OxyS in E.coli MG1655 and E.coli MG1655∆rpoS, under oxidative stress in
early exponential and in stationary growth ph ase ...................................... 94
+
9.5 Stability determination of OxyS in E.coli MG1655 & strain MG1655∆hfq and E.co)l i &N 3433 (rne
ts
N3431 (rne) under oxidative stress in early exponential and in stationary growth phase without
transcription inhibition ................................................... ............................... 95
9.6 Stability determination of rpoS mRNA in E.coli MG1655 and strain MG1655∆hfq, under oxidative stress
in early exponential and

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text