QCD corrections to B → X_1tnsl_1hn+l_1hn- in the standard model and beyond [Elektronische Ressource] / Christoph Bobeth
113 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

QCD corrections to B → X_1tnsl_1hn+l_1hn- in the standard model and beyond [Elektronische Ressource] / Christoph Bobeth

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
113 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

+QCD Corrections to B!X l l in thesStandard Model and BeyondChristoph BobethSeptember 2003Physik Department T31Prof. A. J. BurasPhysik{DepartmentTechnische Universitat Munc henInstitut fur Theoretische PhysikLehrstuhl Univ.-Prof. Dr. Andrzej J. Buras+QCD Corrections to B!X l l insthe Standard Model and BeyondChristoph BobethVollst andiger Abdruck der Fakult at fur Physik der Technischen Universit at Munc hen zurErlangung des akademischen Grades einesDoktors der Naturwissenschaften (Dr. rer. nat.)genehmigten Dissertation.Vorsitzender: Univ.-Prof. Dr. Stephan PaulPrufer der Dissertation:1. Univ.-Prof. Dr. Andrzej J. Buras2. Dr. Manfred LindnerDie Dissertation wurde am 28. August 2003 bei der Technischen Universit at Munc hen ein-gereicht und durch die Fakult at fur Physik am 11. September 2003 angenommen.Abstract+The inclusive semileptonic B decay B!X l l will be discussed in this work. Here Xs sdenotes an arbitrary state of total strangeness 1 and the leptons are considered to bel =eor. The theoretical predictions of inclusive quantities are preferable with respect to exclu-sive ones since non-perturbative e ects are under control in the framework of heavy quarkexpansion (HQE). The non-perturbative corrections are small in certain regions of the dilep-ton invariant mass spectrum whereas the major contribution consists in the perturbatively+calculable parton decay b!sl l .

Sujets

Informations

Publié par
Publié le 01 janvier 2003
Nombre de lectures 9
Langue English

Extrait

+QCD Corrections to B!X l l in thes
Standard Model and Beyond
Christoph Bobeth
September 2003
Physik Department T31
Prof. A. J. BurasPhysik{Department
Technische Universitat Munc hen
Institut fur Theoretische Physik
Lehrstuhl Univ.-Prof. Dr. Andrzej J. Buras
+QCD Corrections to B!X l l ins
the Standard Model and Beyond
Christoph Bobeth
Vollst andiger Abdruck der Fakult at fur Physik der Technischen Universit at Munc hen zur
Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigten Dissertation.
Vorsitzender: Univ.-Prof. Dr. Stephan Paul
Prufer der Dissertation:
1. Univ.-Prof. Dr. Andrzej J. Buras
2. Dr. Manfred Lindner
Die Dissertation wurde am 28. August 2003 bei der Technischen Universit at Munc hen ein-
gereicht und durch die Fakult at fur Physik am 11. September 2003 angenommen.Abstract
+The inclusive semileptonic B decay B!X l l will be discussed in this work. Here Xs s
denotes an arbitrary state of total strangeness 1 and the leptons are considered to bel =e
or. The theoretical predictions of inclusive quantities are preferable with respect to exclu-
sive ones since non-perturbative e ects are under control in the framework of heavy quark
expansion (HQE). The non-perturbative corrections are small in certain regions of the dilep-
ton invariant mass spectrum whereas the major contribution consists in the perturbatively
+calculable parton decay b!sl l .
We will extent the existing next-to leading order (NLO) QCD calculation of the parton
result to the next-to-next-to leading order (NNLO) in QCD within the Standard Model
(SM) of elementary particle physics. In particular, the NNLO matching contributions to the
+Wilson coe cien ts of the operators mediating b!sl l will be calculated.
These results are used in the evaluation of the dilepton invariant mass distribution at the
parton level taking into account the NNLO renormalization group evolution of the Wilson
coe cien ts and the NNLO matrix element calculation of the corresponding operators. As a
result we are able to reduce a large uncertainty of16% to 6% of the dilepton invariant
mass distribution which was mainly due to the renormalization scale of the top-quark mass.
2 2 3 3Furthermore, we will include all known =m and =m non-perturbative cor-QCD c QCD b
rections in the calculation of the dilepton invariant mass distribution at the hadronic level.
The analysis will be restricted to low values of the dilepton invariant mass in the region
s^2 [0:05; 0:25] and to high values in the regions^2 [0:64; 0:78]. The HQE is not invalidated
by intermediate hadron resonances in both regions and allows predictions without model-
dependencies. The poorly known matrix elements of heavy quark e ectiv e theory (HQET)
3 3operators of the =m corrections introduce further theoretical uncertainty.QCD b
The uncertainties of the branching ratio of the low- and high-s^ regions originating from
the residual renormalization scale dependence and the poorly known parameters of HQET
are analyzed. The residual renormalization scale dependencies are found to be of the order
of10% and 16% (compared to 20% and 22% at NLO order) in the low- and high-s^
3 3region, respectively. Additionally, the HQET parameters of the order =m induce anQCD b
uncertainty of 5% in the low-s^ region and a large uncertainty of 15% in the high-s^ region.
Apart from the Standard Model we will consider also a special scenario of the Minimal
Supersymmetric Model (MSSM) with a heavy decoupled gluino and a minimal
a vor violation inspired texture of soft supersymmetry breaking parameters. Analogously
to the SM within this scenario the complete set of NNLO matching contributions to the
+Wilson coe cien ts of the operators mediatingb!sl l will be evaluated. Such corrections
can become numerically important when approximate cancellations occur among the new
physics contributions and/or the SM one. The impact of the NNLO corrections on the
dilepton invariant mass distribution will be discussed in connection with the reduction of
renormalization scale uncertainties.Contents
1 Introduction . ... ..... .... ..... .... ..... .... ..... .... ..... ..... .... ..... ... 9
2 The Standard Model . .... ..... .... ..... .... ..... .... ..... ..... .... ..... .. 15
3 E ective Theories ... ..... .... ..... .... ..... .... ..... .... ..... ..... .... ... 23
3.1 E ectiv e Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 The Group Equation . . . . . . . . . . . . . . . . . . . . . . 30
4 The Minimal Supersymmetric Standard Model .. ..... .... ..... .... ..... .... 33
4.1 The MSSM Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 MSSM with MFV and Gluino Decoupling . . . . . . . . . . . . . . . . . . . 39
+5 B ! X l l . ..... .... ..... .... ..... ..... .... ..... .... ..... .... ..... .... 43
5.1 Matching Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Renormalization Group Evolution . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.2 The MSSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Non-perturbative Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6 Conclusions and Outlook .. ..... .... ..... .... ..... ..... .... ..... .... ..... . 83
Appendix AMSSM Lagrangian .. ..... .... ..... .... ..... .... ..... .... ..... .... 87
Appendix BNon-Physical Operators ... ..... ..... .... ..... .... ..... .... ..... .. 91
Appendix CWilson Coe cients ..... ..... .... ..... .... ..... .... ..... .... ..... . 95
C.1 i =W { \top quark { W boson" . . . . . . . . . . . . . . . . . . . . . . . . . 96
C.2 i =H { \top { charged Higgs" . . . . . . . . . . . . . . . . . . . . . . 98
C.3 i =~ { \chargino { up-squark" . . . . . . . . . . . . . . . . . . . . . . . . . 99
C.4 i = 4 { \c { up-squark (quartic)" . . . . . . . . . . . . . . . . . . . . 101
Appendix DAuxiliary Functions ..... .... ..... .... ..... ..... .... ..... .... ..... . 103
Bibliography . . .... ..... .... ..... ..... .... ..... .... ..... .... ..... .... ..... . 105
1 Introduction
The current description of particle physics { the so called Standard Model (SM) { has been
formed as a result of a combination of many theoretical concepts combined with experimental
observations. As a quantum eld theory being locally gauge invariant the ideas of quantum
theory, relativistic eld theory and group theory are needed. The SM successfully incorpo-
1rates almost all known properties of three out of the four known fundamental interactions
{ the strong, the weak and the electro-magnetic force { which is re ected by the invariance
under local transformations of the non-abelian gauge symmetrySU(3)
SU(2)
U(1) .C W Y
In principle local gauge invariance implies massless gauge bosons and consequently pre-
dicts long range forces. Therefore local gauge theories might not appear to be the proper de-
scription of the observed short range weak force mediated by massive gauge bosons. This ap-
parent shortcoming can be solved with the help of spontaneous symmetry breaking achieved
through the Higgs mechanism [1{4]. Furthermore, the proof of the renormalizability of local
non-abelian (Yang-Mills) gauge theories [5] in the early 70ties was extended to spontaneously
broken gauge theories [6]. Both, the Higgs mechanism and the proof of renormalizability
were the foundations of the application of local gauge theories to describe short range weak
interactions and the starting point of the formulation of the SM.
The spontaneous breaking of the gauge symmetry is necessary to properly model the
short range interactions and requires the introduction of at least one scalar particle { the
so called Higgs particle. Up to now the Higgs particle escaped the direct detection at high
energy colliders being the last missing part for the experimental con rmation of the SM.
The formally as massless introduced gauge and \matter" elds (leptons and quarks) acquire
masses due to their couplings to the Higgs eld. Thus the Higgs mechanism represents the
mass generation mechanism of gauge and \matter" elds.
As a consequence of the spontaneous symmetry breaking the couplings of theW boson to
quarks are given in terms of the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
(V ) [7,8] that arises from the diagonalization of the quark mass matrices. In the SM itCKM ij
is this very matrix that is responsible for all weak decays of hadrons as well as for CP non-
2conservation . CP violation was rst observed in 1964 in kaon decay [11] and recently for
0the rst time in theB meson system in the decayB!J= K [12]. The CKM matrix playsS
a fundamental role in the description of weak decays and the origin of CP violation requiring
an exact knowledge and understanding of these parameters. Theoretical predictions of weak
hadron decays su er generally from uncertainties due to non-perturbative strong interaction
e ects preventing a straightforward determination of the CKM matrix elements.

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents