Routing and dimensioning in satellite networks with dynamic topology [Elektronische Ressource] / Markus Werner
213 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Routing and dimensioning in satellite networks with dynamic topology [Elektronische Ressource] / Markus Werner

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
213 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Lehrstuhl fur¨ KommunikationsnetzeTechnische Universitat¨ Munchen¨Routing and Dimensioning in Satellite Networkswith Dynamic TopologyMarkus WernerVollstandiger¨ Abdruck der von der Fakultat¨ fur¨¨ ¨Elektrotechnik und Informationstechnik der Technischen Universitat Munchenzur Erlangung des akademischen Grades einesDoktor-Ingenieursgenehmigten Dissertation.Vorsitzender: Univ.-Prof. Dr.-Ing. J. HagenauerPrufer¨ der Dissertation: 1. Univ.-Prof. Dr.-Ing. J. Eberspacher¨2. Prof. des Univ. G. Maral, Ecole Nationale Superieure´ desTel´ ecommunications´ – Site de Toulouse / FrankreichDie Dissertation wurde am 31.01.2002 bei der Technischen Universitat¨ Munchen¨eingereicht und durch die Fakultat¨ fur¨ Elektrotechnik und Informationstechnikam 13.06.2002 angenommen.AcknowledgementsThis thesis originates from my work as research scientist at the Institute of Communications andNavigation of the German Aerospace Center (DLR). During this time, many people have con-tributed in various ways to the successful outcome of this work.First of all, I want to thank my supervisor Prof. Dr.-Ing. Jor¨ g Eberspacher¨ for his constant advice,support and many helpful and stimulating discussions during the various phases of the dissertation.I am especially grateful for his confidence in my work, giving me considerable freedom for creativeresearch.I would also like to thank Prof. Gerard´ Maral who readily accepted to act as the second auditorof the thesis.

Informations

Publié par
Publié le 01 janvier 2002
Nombre de lectures 20
Langue English
Poids de l'ouvrage 7 Mo

Extrait

Lehrstuhl fur¨ Kommunikationsnetze
Technische Universitat¨ Munchen¨
Routing and Dimensioning in Satellite Networks
with Dynamic Topology
Markus Werner
Vollstandiger¨ Abdruck der von der Fakultat¨ fur¨
¨ ¨Elektrotechnik und Informationstechnik der Technischen Universitat Munchen
zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs
genehmigten Dissertation.
Vorsitzender: Univ.-Prof. Dr.-Ing. J. Hagenauer
Prufer¨ der Dissertation: 1. Univ.-Prof. Dr.-Ing. J. Eberspacher¨
2. Prof. des Univ. G. Maral, Ecole Nationale Superieure´ des
Tel´ ecommunications´ – Site de Toulouse / Frankreich
Die Dissertation wurde am 31.01.2002 bei der Technischen Universitat¨ Munchen¨
eingereicht und durch die Fakultat¨ fur¨ Elektrotechnik und Informationstechnik
am 13.06.2002 angenommen.Acknowledgements
This thesis originates from my work as research scientist at the Institute of Communications and
Navigation of the German Aerospace Center (DLR). During this time, many people have con-
tributed in various ways to the successful outcome of this work.
First of all, I want to thank my supervisor Prof. Dr.-Ing. Jor¨ g Eberspacher¨ for his constant advice,
support and many helpful and stimulating discussions during the various phases of the dissertation.
I am especially grateful for his confidence in my work, giving me considerable freedom for creative
research.
I would also like to thank Prof. Gerard´ Maral who readily accepted to act as the second auditor
of the thesis. In fact, he has been more than an examiner of the final thesis only; for many years
before, I had the pleasure to cooperate with him in various research projects, in most fruitful
co-supervision of students in a bilateral student exchange program, and for a number of joint
publications. Over all these years, I have personally drawn invaluable stimulation and feedback,
experience and knowledge gain from this cooperation.
A key factor for such a thesis to be successfully completed is the daily working environment.
I sincerely thank all my colleagues and students of the Department Digital Networks (DN) at
DLR, who have jointly contributed to a highly positive spirit over all those years. Without the
friendly, creative and stimulating atmosphere in the DN research “family” this work would have
been virtually impossible. Representing all these colleagues, I would like to mention the head of
this group, Dr. Erich Lutz, whom I also thank for his continuous interest, stimulation and support
in my particular area of research.
For some focussed parts of the research work towards this thesis, I have also had the opportunity
and pleasure to cooperate with several colleagues from Prof. Eberspacher’¨ s research team at the
Institute of Communication Networks (LKN) of the Munich University of Technology. I would
like to express my thanks to them for all the related stimulating and helpful discussions, and to the
team as a whole for my integration in the LKN “family.”
I would also like to thank Dr. Axel Jahn and Dr. Erich Lutz for devoting valuable time and effort
to proof-reading the manuscript, which contributed to an improved readability of the text in terms
of both language and content.
Finally, I thank my wife Brigitte and my children Franziska, Johannes and Magdalena, for their
love and support, for their patience and tolerance missing their husband and father in many hours
of physical and mental absence — and for the continuing companionship in the real promovere in
life.
Oberpfaffenhofen, July 2002 Markus Werner
iiiiv
To Brigitte, Franziska, Johannes, and MagdalenaContents
1 Introduction 1
1.1 Motivation and Background . ............................ 1
1.2 Scope and Contributions of the Thesis ........................ 2
2 Satellite Constellation Networks 7
2.1 System Architecture . . ................................ 8
2.1.1 Space Segment 9
2.1.2 Ground Segment . . .10
2.1.3 Air Interface .10
2.2 Satellite Orbits ....................................1
2.2.1 Basic Orbit Parameters ............................11
2.2.2 Useful Circular Orbits13
2.2.3 Satellite Ground Tracks . . . ........................14
2.3 Satellite–Earth Geometry . . .15
2.3.1 Basic Geometric Relations . .15
2.3.2 Coverage Area ................................16
2.4 Satellite Constellations and Intersatellite Link (ISL) Networks . . . . . . .....17
2.4.1 Basic Design Considerations .17
2.4.2 Constellation Types . . ............................18
2.4.2.1 Star Constellations . ........................19
2.4.2.2 Delta21
2.4.3 ISL Network Topologies . . .21
2.5 Multiple Coverage, Handover and Satellite Diversity ................23
2.5.1 Multiple Satellite Coverage .23
2.5.2 Handover . . . ................................25
2.5.3 Satellite Diversity . . . ............................27
2.6 Network Traffic Dynamics . .28
2.6.1 User Link Capacity and Traffic Dynamics . . ................29
2.6.2 Long-Term Variation and System Period . . .31
vvi CONTENTS
3 ATM-Based Satellite Networking Concept 34
3.1 Motivation and Scenario . . .............................34
3.2 Basic ATM Principles.................................35
3.2.1 Transmission and Multiplexing Scheme . . .................36
3.2.2 Virtual Connections36
3.3 ATM in Satellite Systems . .38
3.3.1 Application and Service Scenario . .....................38
3.3.2 Protocol Architecture and Challenges . . .39
3.4 Overall Networking Concept41
3.4.1 Network Segmentation . . . .........................41
3.4.2 Problem Outline . . .............................41
3.4.3 Continuous End-to-End Networking42
3.4.4 UDL Segment: Air Interface Access Network . . . .............4
3.4.5 ISL Segment: Meshed Space Backbone Network .45
3.5 Feasibility and Implementation Aspects . . .....................46
4 Routing 49
4.1 Routing in LEO/MEO Satellite Networks .49
4.1.1 ISL Topology Dynamics . . .........................50
4.1.2 Network Segmentation . . .51
4.2 UDL Routing .....................................52
4.2.1 Satellite Handover . .............................53
4.2.1.1 Handover Procedure . . . .....................53
4.2.1.2 Handover Strategies . . .54
4.2.2 Satellite Diversity . .59
4.2.2.1 Scenario and User Environment . .................59
4.2.2.2 Evaluation of Satellite Diversity Gain . . .............61
4.3 Off-Line Dynamic ISL Routing Concept . . .....................64
4.3.1 Discrete-Time Network Model . . .64
4.3.2 Dynamic Virtual Topology Routing (DVTR) . . .6
4.4 On-Line Adaptive ISL Routing . . . .........................73
4.4.1 Distributed Approach Based on Deterministic Algorithms .........75
4.4.1.1 Dynamic and Adaptive Routing Concepts . . .75
4.4.1.2 Decentralized Traffic Adaptive Routing . .............75
4.4.2 Isolated Approach Based on Neural Networks . . .79
4.4.2.1 Motivation and Background . . . .................79
4.4.2.2 Basics of Multilayer Perceptrons81
4.4.2.3 Traffic Adaptive Routing with Distributed Multilayer Perceptrons 84CONTENTS vii
5 ISL Network Design 87
5.1 Introduction and Overview . . ............................87
5.2 Topological Design . . ................................8
5.2.1 Motivation and Satellite Constellation Options . . . ............88
5.2.2 ISL Topology Design Procedure for Delta Constellations . . . . . .....8
5.3 ISL Routing Framework . . .92
5.3.1 The Combined ISL Routing/Dimensioning Problem ............92
5.3.2 Path Grouping Concept............................96
5.4 Capacity Dimensioning ................................97
5.4.1 Overall Approach and Assumptions . ....................97
5.4.2 Isolated Single-Step Dimensioning .9
5.4.2.1 Heuristic Approach ........................99
5.4.2.2 Optimization Approach . .102
5.4.3 History-Based Multi-Step Dimensioning . . ................105
5.4.3.1 Heuristic Approach107
5.4.3.2 Optimization Approach . . ....................107
6 Numerical Studies 111
6.1 Routing ........................................12
6.1.1 UDL Routing . ................................112
6.1.1.1 Scenario and Overall Simulation Approach ............13
6.1.1.2 Channel Modeling . ........................13
6.1.1.3 Channel Adaptive Satellite Diversity (CASD) . . . . . .....16
6.1.1.4 Satellite Diversity and Handover Performance . . . . . .....18
6.1.2 ISL Routing . .123
6.1.2.1 Simulation Approach and Traffic Modeling............123
6.1.2.2 Impact of Long-Term Traffic Variation . .125
6.1.2.3 Impact of Traffic Weight in the Link Cost Metric . . . . .....126
6.1.2.4 Impact of the Type of Link Cost Metric . . ............131
6.2 ISL Network Dimensioning . . ............................132
6.2.1 Scenario and Assumptions . . ........................133viii CONTENTS
6.2.2 Isolated Single-Step Dimensioning .....................134
6.2.2.1 Worst-Case Link Traffic Load . . .................134
6.2.2.2 Physical Link Traffic Load . . .139
6.2.2.3 Path Costs .............................139
6.2.3 History-Based Multi-Step Dimensioning .139
6.2.3.1 History Modeling .........................142
6.2.3.2 Worst-Case Link Traffic Load . . .................146
6.2.3.3 Physical Link Traffic Load . . .150
6.2.3.4 Path Traffic Load150
7 Conclusions 154
A Referenc

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents