Modélisation et étude des propriétés optiques des nanotubes de carbone    Modelling and study of
29 pages
English

Modélisation et étude des propriétés optiques des nanotubes de carbone Modelling and study of

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
29 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Mode´lisation et e´tude des proprie´te´s optiquesdes nanotubes de carboneModelling and study of optical properties ofcarbon nanotubesBenjamin Ricaud´Universite du Sud Toulon VarCentre de Physique The´orique, 22 Octobre 200766Carbon nanotubesTubes made of carbon atoms with = radiuses, = chiralities.◮ Different properties.◮ How to sort nanotubes.Benjamin Ricaud -2/26- 22 Octobre 2007 ,Optical spectrum◮ A way to sort nanotubes. Monochromatic light sent on CN, lowtemp.I ω0I ω1◮ Optical absorption spectrum /ω◮ Optical absorption spectrum related to radius & chirality.◮ explain a part of the optical absorption spectrum (Infrared).−(Absorption by e )Benjamin Ricaud -3/26- 22 Octobre 2007 ,Optical response, physical explanationSending light and looking at the absorption of semiconductor CN.− −◮ Without e -e interaction:E◮ periodic lattice⇒ bands& gaps Conduction band −e◮ Semiconductor: G. state=valence bands full, E(k)cconduction bands empty.Eg◮ Absorption↔ Energy.− − E(k)◮ vWith e -e interaction (weak):+Valence band h k◮ “excitons”. Wannier (1937), Elliot(1957), Mahan.− + E◮ exciton, coupled e -h : H φ = E φexc n n nConduction band◮ Absorption spectrum at 0K with Eg=gap, η=controlE(k)cadiabaticity:En2X |ψ (0)|nα(ω)∼2 2(E + E +~ω)[(E + E −~ω) +(~η) ] E(k)n g n g vn+Valence band h k[Haug, Koch]◮ Nanotubes: Exciton eigenstates depend on r.Benjamin Ricaud -4/26- 22 Octobre 2007 ,Benjamin Ricaud -5 ...

Informations

Publié par
Nombre de lectures 44
Langue English

Extrait

Mode´lisation et e´tude des proprie´te´s optiques
des nanotubes de carbone
Modelling and study of optical properties of
carbon nanotubes
Benjamin Ricaud
´Universite du Sud Toulon Var
Centre de Physique The´orique, 22 Octobre 20076
6
Carbon nanotubes
Tubes made of carbon atoms with = radiuses, = chiralities.
◮ Different properties.
◮ How to sort nanotubes.
Benjamin Ricaud -2/26- 22 Octobre 2007 ,



Optical spectrum
◮ A way to sort nanotubes. Monochromatic light sent on CN, low
temp.
I ω0
I ω1
◮ Optical absorption spectrum /ω
◮ Optical absorption spectrum related to radius & chirality.
◮ explain a part of the optical absorption spectrum (Infrared).
−(Absorption by e )
Benjamin Ricaud -3/26- 22 Octobre 2007 ,Optical response, physical explanation
Sending light and looking at the absorption of semiconductor CN.
− −
◮ Without e -e interaction:
E
◮ periodic lattice⇒ bands& gaps Conduction band −e
◮ Semiconductor: G. state=valence bands full, E(k)c
conduction bands empty.
Eg◮ Absorption↔ Energy.
− − E(k)◮ vWith e -e interaction (weak):
+Valence band h k◮ “excitons”. Wannier (1937), Elliot(1957), Mahan.
− + E◮ exciton, coupled e -h : H φ = E φexc n n n
Conduction band
◮ Absorption spectrum at 0K with Eg=gap, η=control
E(k)cadiabaticity:
En2X |ψ (0)|n
α(ω)∼
2 2(E + E +~ω)[(E + E −~ω) +(~η) ] E(k)n g n g vn
+Valence band h k
[Haug, Koch]
◮ Nanotubes: Exciton eigenstates depend on r.
Benjamin Ricaud -4/26- 22 Octobre 2007 ,Benjamin Ricaud -5/26- 22 Octobre 2007 ,Model for exciton
◮ Pedersen 2003, Kostov et al. 2002
◮ Exciton: 2 particles on a tube.
2∂◮ Exciton model Hamiltonian: H =− −22m ∂x1 1
2 2 2∂ ∂ ∂ r− − − V (x − x , y − y )2 2 2 1 2 1 22m ∂y 2m ∂x 2m ∂y1 2 21 2 2
◮ Hamiltonian with Coulomb pot. on a cylinder
1rV (x, y) = q
2 y2 2x + 4r sin 2r
◮ ”center of mass” separation: X = (m x + m x )/(m + m )1 1 2 2 1 2
x = x − x , Y = y , y = y − y1 2 2 1 2
2 2 2 2∂ ∂ ∂ ∂ reH =− − − − − V (x, y)
2 2 22∂x 2∂y 2m ∂Y m ∂Y∂y2 2
Benjamin Ricaud -6/26- 22 Octobre 2007 ,r rFrom H to H , one-dimensional effective Hamiltonianeff
2 2 2 2∂ ∂ ∂ ∂ r◮ H =− − − − − V (x, y)2 2 22μ∂x 2μ∂y 2m ∂Y m ∂Y∂y2 2P 2Δ nY◮ Projection over modes of− = P (p.b.c.)2 n2 2r
n
2n
◮ Transverses modes with energy and22r
n1 i Y√ rχ (Y) = e , P =|χ ><χ |n n n n2πr
◮ Only low lying spectrum is interesting.
◮ Projection on the ground transverse mode n = 0:
ΔΔx yr r 2 1(1⊗P )H (1⊗P ) =− − −V , in L (R×rS )0 0
2 2
◮ same for y:
Δxr r 2H =− − V in L (R)eff eff
2Z πr1 1r qV (x) = dyeff 2πr 2 y−πr 2 2x + 4r sin
2r
Benjamin Ricaud -7/26- 22 Octobre 2007 ,6
r rFrom H to H , one-dimensional effective Hamiltonianeff rH Vn,meff
r 1 H + 2eff 2r f r r 2H =  = H + H , indiag offdiagH + 2eff r 
...Vm,n
2 2ℓ (Z; L (R)). Z π i(m−n)y1 eqV (x) = dy x = 0m,n
y2π 2 2−π x + 4r sin 2
f r◮ Perturbation theory: comparison H and Hdiag
r
◮ z∈ρ(H ), r smalleff
r→0f r −1 r −1◮ k(H − z) −(H − z) k → 0, informations on the spectrumeff
◮ H is H -form bounded.offdiag diag
r
◮ Difficulty: H depend on r, choice of z depend on r.eff
Benjamin Ricaud -8/26- 22 Octobre 2007 ,Unperturbed model
Z πr
1 1rV (x) = q dyeff 2πr 2 y2 2−πr x + 4r sin
2r
r
◮ Using perturbation theory for small r+ quadratic forms, Heff
approximated by:
2d 1
◮ H ψ = ψ− ψ = Eψ with conditions at zero:C 2dx |x| ′ ′ψ (ε)−ψ (−ε) r
lim + 2 ln ψ(0) = 0
ε→0 2 2ε

◮ Oddψ not continuous.
◮ final Hamiltonian depend on r, spectrum is asymptotic.
1◮ Similar to Loudon,1959: V(x) = , a = r/2.|x|+a
Benjamin Ricaud -9/26- 22 Octobre 2007 ,results
1
◮ even states (S), energies: E =− and functions: Whittakern 2α(r,n)
ψ (x) = W 1(|x|).n α(r,n), 2
◮ α(r, n) such that f(α(r, n), r, n) = 0.
1
◮ odd states (P), energies: E =− and functions (P): Laguerren 2n
1− |x| 1
2ψ (x) = e xL (|x|).n n−1
2
◮ fundamental energy: E ∼−4(ln r) for small r.n
0
-4
Second p state E
3p◮ Stronger bound in 1D. -8s state E
2s
◮ excited states: energies & First p state E
2p
Ground state Eeigenvectors. -12
1s
Variational E
1s
-16
0 0,1 0,2 0,3 0,4 0,5 0,6
Nanotube radius r [ a* ]
B
Benjamin Ricaud -10/26- 22 Octobre 2007 ,
Exciton binding energy E [Ry*]

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents