Programme des cours
100 pages
Français
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Programme des cours

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
100 pages
Français

Description

15 crédits1000 ANALYSE I (11M20)BACHELOR 1ère ANNEE OO = obligatoireN. Monod PO Annuel (AN)Enseignant(s)E = option avec examen AN C4 MA 12-14 SCII-A300HoraireME 12-14 SCII-A300VE 10-13 SCII-229E3VE 10-13 SCII-223VE 10-13 SCII-A50BL1 ME 14-15 SCII-A50BME 14-15 SCII-A50AAN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire CONTENU AUTOMNE 1. Nombres réels. 2. Suites. 3. Séries. 4. Fonctions continues. 5. Uniformité. 6. Différentiation. 7. Intégrale de Riemann. 8. Séries entières, séries de Taylor. 9. Intégrales impropres. 10. Quelques séries particulières. PRINTEMPS I. Calcul différentiel et intégral d'une variable (Chapitres supplémentaires). 1. La série de Taylor avec le reste, convergence de la série de Taylor. 2. Techniques d'intégration: intégrales des fonctions rationnelles, substitutions, fonction Gamma(x) et fonction Bêta(x,y). 3. Équations différentielles linéaires homogènes et inhomogènes. 4. différ nonlinéaires, séparation de variables, équations de Ricatti. II. Calcul différentiel et intégral à plusieurs variables. n1. Distances et normes sur R . Convergences de suites de vecteurs. Voisinages, ensembles ouverts et fermés, ensembles compacts. L'ensemble de Cantor. 2. Fonctions continues. Continuité uniforme et convergence uniforme. La courbe de Peano-Hilbert. 3. Fonctions différentiables de plusieurs ...

Sujets

Informations

Publié par
Nombre de lectures 21
Langue Français

Exrait

15 crédits1000 ANALYSE I (11M20)
BACHELOR 1ère ANNEE O
O = obligatoireN. Monod PO Annuel (AN)Enseignant(s)
E = option avec examen
AN C4 MA 12-14 SCII-A300Horaire
ME 12-14 SCII-A300
VE 10-13 SCII-229E3
VE 10-13 SCII-223
VE 10-13 SCII-A50B
L1 ME 14-15 SCII-A50B
ME 14-15 SCII-A50A
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

CONTENU

AUTOMNE

1. Nombres réels.
2. Suites.
3. Séries.
4. Fonctions continues.
5. Uniformité.
6. Différentiation.
7. Intégrale de Riemann.
8. Séries entières, séries de Taylor.
9. Intégrales impropres.
10. Quelques séries particulières.

PRINTEMPS

I. Calcul différentiel et intégral d'une variable (Chapitres supplémentaires).
1. La série de Taylor avec le reste, convergence de la série de Taylor.
2. Techniques d'intégration: intégrales des fonctions rationnelles, substitutions, fonction
Gamma(x) et fonction Bêta(x,y).
3. Équations différentielles linéaires homogènes et inhomogènes.
4. différ nonlinéaires, séparation de variables, équations de Ricatti.

II. Calcul différentiel et intégral à plusieurs variables.
n1. Distances et normes sur R . Convergences de suites de vecteurs.
Voisinages, ensembles ouverts et fermés, ensembles compacts.
L'ensemble de Cantor.
2. Fonctions continues. Continuité uniforme et convergence uniforme. La courbe de Peano-
Hilbert.
3. Fonctions différentiables de plusieurs variables.
Le théorème des fonctions implicites.
Intégrales dépendant de paramètres.
4. Dérivées d'ordre supérieur et séries de Taylor.
Problèmes d'extremum. Minimum conditionnel et multiplicateurs de Lagrange.
5. Intégrales multiples. La formule de changement de variables pour les intégrales doubles.


REFERENCES

Chapitres II, III et IV du livre "L’analyse au fil de l’histoire" de E. Hairer et G. Wanner, Springer-
Verlag, Berlin, Heidelberg 2001.

Prérequis : -
Mode d'évaluation : Examen écrit et examen oral
Certificat d'exercices de cours
Février - Juin - SeptembreSessions :7 crédits1002 ALGEBRE I (11M10)
BACHELOR 1ère ANNEE O
O = obligatoireT. Smirnova-Nagnibeda Automne (A)Enseignant(s)
E = option avec examenCE

AC4 JE 10-12 SCII-A150Horaire
VE 15-17 SCII-A300
E2 LU 14-16 SCII-229
L1 JE 15-16 SCII-229
JE 15-16 SCII-223
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

CONTENU

Algèbre linéaire
• Espaces vectoriels
• Applications linéaires
• Matrices
• Déterminants
• Valeurs propres et vecteurs propres
• Espaces euclidiens et hermitiens
• Théorème spectral

Prérequis : -
Mode d'évaluation : Examen écrit
Certificat d'exercices de cours
Février - SeptembreSessions :12 crédits1004 GEOMETRIE I (11M30)
BACHELOR 3ème ANNEE COURS A OPTION B E
O = obligatoireG. Wanner PO Annuel (AN)Enseignant(s)
E = option avec examen
AN C2 JE 13-15 SCII-A50AHoraire
E2 ME 10-12 EM-200
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

CONTENU

AUTOMNE

Géométrie classique. Géométrie analytique.

PRINTEMPS

Géométrie projective. Géométrie différentielle.

Prérequis : -
Mode d'évaluation : Examen oral
Février - Juin - SeptembreSessions :16 crédits1008 ALGEBRE II (12M10)
BACHELOR 3ème ANNEE COURS A OPTION B E
MASTER COURS A OPTION E
O = obligatoireT. Vust MER Annuel (AN)Enseignant(s)
E = option avec examen
AN C3 VE 10-12 SM-17Horaire
E2 ME 11-13 SCII-223
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

CONTENU

• Théorie des groupes, en particulier les théorèmes de Sylow et de structure des groupes
abéliens de type fini.
• Arithmétiques dans les anneaux, en particulier, anneaux factoriels.
• Théorème de Jordan.

Prérequis : Algèbre I
Mode d'évaluation : Examen oral
Février - Juin - SeptembreSessions :6 crédits1014 PROBABILITES ET STATISTIQUE (12M60)
BACHELOR 3ème ANNEE COURS A OPTION B E
O = obligatoireY. Velenik PO Annuel (AN)Enseignant(s)
E = option avec examen
AN C1 ME 8-10 SCII-223Horaire
A E1 JE 9-10 SCIII-013
P E1 ME 10-11 SCII-223
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

CONTENU

AUTOMNE

• Événements, mesure de probabilité, espaces de probabilités.
• Probabilités conditionnelles, événements indépendants.
• Formule de Bayes.
• Variables aléatoires, fonctions de répartition.
• Principales lois de probabilités.
• Espérance, variance, moments.
• Vecteurs aléatoires : distribution conjointe, distribution marginale, distribution conditionnelle,
indépendance, covariance et corrélation.
• Fonctions génératrices et fonctions caractéristiques.
• Loi des grands nombres et théorème central limite. Introduction à la statistique.
• Échantillons aléatoires.
• Estimateurs, qualité des estimateurs.
• Inférence statistique.
• Tests d'hypothèses.
• Intervalles de confiance.

PRINTEMPS

Divers aspects plus avancés parmi les suivants :
• Chaînes de Markov
• Convergence de variables aléatoires
• Martingales
• Théorie du renouvellement.

Prérequis : Analyse I
Mode d'évaluation : Examen oral
Février - Juin - SeptembreSessions :12 crédits1015 GEOMETRIE II (12M30)
BACHELOR 3ème ANNEE COURS A OPTION B E
MASTER COURS A OPTION E
O = obligatoireD. Coray PT Annuel (AN)Enseignant(s)
E = option avec examen
AN C2 JE 10-12 SM-17Horaire
E2 VE 13-15 SM-623
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

CONTENU

AUTOMNE

Catégorie et fonctions.
Topologie générale.

PRINTEMPS

Structure ordonnées.
Géométrie projective.

Prérequis : Géométrie I et Algèbre I
Mode d'évaluation : Examen oral
Février - Juin - SeptembreSessions :3.5 crédits1018 STRUCTURE DE BANDES ET PHENOMENES DE TRANSPORT
MASTER COURS A OPTION E
O = obligatoireD. Jaccard MER Automne (A)Enseignant(s)
E = option avec examenT. Jarlborg MER
AC2 VE 8-10 PSI-102Horaire
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

A partir de l’équation de Schrödinger, on peut déterminer la structure électronique des atomes.
Ensuite à l’aide du théorème de Bloch on peut étudier un solide avec une cellule unitaire
périodique. Les propriétés du solide dépendent de cette structure électronique, c’est-à-dire des
énergies, des « bandes » et de la fonction d’onde.

Il reste à faire des calculs basés sur ces premiers résultats, pour déterminer par exemple
l’intensité d’une mesure spectroscopique.

On peut également prévoir des propriétés telles que le module de rigidité, la chaleur spécifique,
les propriétés supraconductrices ou si un matériau devient magnétique.

Dans ce cours, nous allons surtout essayer de comprendre des propriétés de transport, comme
la conductibilité ou le pouvoir thermoélectrique, ainsi que des phénomènes plus exotiques
comme l’effet Kondo.

Les différentes méthodes de calcul de bandes seront exposées sans trop de détails. Le but de
ce cours est de donner une introduction qui sera utile même pour ceux qui veulent faire
l’expérience plutôt que la théorie. Le cours permet de se faire une idée de comment passer de
la connaissance des positions des atomes et de leur charge « Z », aux propriétés physiques.
Quelques démonstrations numériques sur ordinateur seront possibles.

Les cours de Master peuvent être dispensés en Français ou en Anglais selon l’audience.
Depending on the audience, Master Courses can be given in French or in English.
Prérequis : Mécanique Quantique I et II
Mode d'évaluation : Examen oral
Février - SeptembreSessions :- crédits1033 PHYSIQUE D'AUJOURD'HUI
BACHELOR 1ère ANNEE O
O = obligatoireA. Blondel PO Automne (A)Enseignant(s)
E = option avec examenC. Renner PO
J.-P. Wolf PO
M. Maggiore PO
G. Meynet PO
T. Courvoisier PO
A. Clark PO
AC2 ME 10-12 EPAHoraire
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

1. Du soleil à la terre… oscillations de neutrinos
Par le Professeur A. Blondel
Cours : le 19 septembre 2007

2. Sondes locales à balayage : Acteurs de la révolution nanotechnologique
Par le Professeur C. Renner
Cours : le 26 septembre 2007

3. Les lasers ultra-brefs et ultra-intenses
Par le Professeur J.-P. Wolf
Cours : le 3 octobre 2007

4. Relativité générale, trous noirs et ondes gravitationnelles I
Par le Professeur M. Maggiore
Cours : le 10 octobre 2007

5. Matière sombre: la face cachée de l'Univers
Par le Professeur G. Meynet
Cours : le 17 octobre 2007

6. Trous noirs et étoiles de neutrons dans la Galaxie : 5 ans d'observation avec Intégral
Par le Professeur T. Courvoisier
Cours : le 24 octobre 2007

7. Le LHC du CERN et son rôle dans la physique des interactions des particules
fondamentales
Par le Professeur A. Clark
Cours : le 31 octobre 2007

8. Relativité générale, trous noirs et ondes gravitationnelles II
Par le Professeur M. Maggiore
Cours : le 7 novembre 2007

Prérequis : -
Mode d'évaluation :
Sessions : -8 crédits1036 METHODES MATHEMATIQUES POUR PHYSICIENS I
BACHELOR 1ère ANNEE O
O = obligatoireP. Wittwer PT Annuel (AN)Enseignant(s)
E = option avec examen
A C1 MA 9-10 SCIII-009Horaire
E3 MA 10-12 SCII-A50B
ME 15-16 SCII-229
MA 11-12 SCII-223P C1
E3 JE 14-17 SCII-A150
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

DESCRIPTIF
Exercices et mathématiques destinés à donner aux étudiants une connaissance approfondie
des outils mathématiques utilisés dans les cours de physique de première année.

CONTENU
Notation, les dérivées des fonctions, dérivées partielles, intégrales, équations linéaires, espaces
vectoriels, produit scalaire, produit vectoriel, applications linéaires et formes bilinéaires,
coniques, les nombres complexes, séries de Fourier, équations différentielles ordinaires,
intégrales curvilignes, intégrales doubles, intégrales multiples, gradient, divergence, rotationnel,
polynômes orthogonaux, harmoniques sphériques, transformation de Fourier, équation de la
chaleur.

Prérequis : -
Mode d'évaluation : Contrôle continu
-Sessions :5 crédits1039 ASTRONOMIE ET ASTROPHYSIQUE, INTRODUCTION GÉNÉRALE
BACHELOR 3ème ANNEE COURS OBLIGATOIRES O
MASTER BI-DISCIPLINAIRE MINEURE PHYSIQUE COURS A CHOIX E
O = obligatoireS. Udry PO Automne (A)Enseignant(s)
E = option avec examen
AC3 ME 13-15 PSI-306Horaire
VE 9-10 STU
E1 VE 8-9 STU
AN = annuel, A = automne, P = printemps / C = cours, E = exercices, L = travaux pratiques, S = colloque/séminaire

Ce cours est le premier cours d'astronomie et d'astrophysique que rencontrent les
étudiants en physique. Il fournit une information générale sur les domaines importants
de l'astrophysique.

- Les propriétés des étoiles et le principe de la détermination de ces propriétés.
- Les éléments de la physique interne des étoiles.
- L'évolution stellaire, la nucléosynthèse, les astres compacts.
- L'univers des galaxies, la détermination des masses, des vitesses et des distances.
- La structure de notre Galaxie et sa dynamique.
- Notions d'astrophysique des hautes énergies

Dans ce cours, l'accent est particulièrement mis sur les concepts principaux, et des calculs
simples permettent souvent d'obtenir des résultats dont les conséquences astrophysiques sont
très riches.

Prérequis : -
Mode d'évaluation : Examen oral
Certificat d'exercices de cours
Février - Juin - SeptembreSessions :