Tutorial 12
15 pages
English

Tutorial 12

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
15 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

1 Control Engineering CE447 Tutorial 12 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia School of Electrical, Electronic and Computer Engineering. Control Engineering (CE) 447 Tutorial 12 1. A helicopter near hover can be described by the equations x -0.02 -1.4 9.8 x 9.8 1 1 x = -0.01 -0.4 0.0 x + 6.3 u 2 2 x 0.0 1.0 0.0 x 0.0 3 3 where x = horizontal velocity, x = pitch rate, x = pitch angle, 1 2 3 u = rotor tilt angle. (a) Find the open loop poles (b) Show that a state feedback law to move the poles to s = -2, s = -1– j is k = 0.0628 0.4706 0.9949 [ ] 2. Consider the system defined by x = Ax + Bu where 0 1 0 0 A = 0 0 1 , B = 0 , C = 1 2 3 [ ] -2 -4 -6 1 By using the state feedback control u = - Kx, is desired to have the closed-loop poles at s = - 2 – j4, s = - 6. Determine the state feedback gain matrix K. 3. Consider the system defined by x = Ax + Bu y = Cx where 0 1 0 0 A = 0 0 1 , B = 0 , c = 1 0 0 [ ] -6 -11 -6 1 2 Control Engineering CE447 ...

Informations

Publié par
Nombre de lectures 106
Langue English

Extrait

Control Engineering CE447 Tutorial 12 1 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia   School of Electrical, Electronic and Computer Engineering. Control Engineering (CE) 447 Tutorial 12 1.  A helicopter near hover can be described by the equations  x 1 0.02 1.4 9.8 x 1 9.8                x 2 = 0.01 0.4 0.0  x 2 + 6.3  u  x 3  0.0 1.0 0.0 x 3 0.0   where x 1 = horizontal velocity, x 2 = pitch rate, x 3 = pitch angle,     u  rotor tilt angle. (a) Find the open loop poles (b) Show that a state   =  feedback law to move the poles to s = -2, s =  1 ± j  is       k = [ 0.0628 0.4706 0.9949 ]   2. Consider the system defined by                    x = Ax + Bu   where  0 1 0 0   = 0 0 1 , 0 , = [ ]  A 2 4 6 B = 1 C  1 2 3  By using the state feedback control u = Kx , is desired to have the  closed-loop poles at s = 2 ± j 4, s =  6. Determine the state feedback  gain matrix K .   3. Consider the system defined by x = Ax + Bu                                          y = Cx   where  0 1 0 0  = 0 0 1 , 0 , = [ ] A 6 11 6 B = 1 c  1 0 0
Control Engineering CE447 Tutorial 12 2 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia    It is desired to design a full-order state observer. Determine the observer  Gain matrix L by direct method. Assume that the desired eigenvalues of  the observers are: s  =  2 ± j 3.464, 5 .  4. Antenna azimuth tracking system can be described by the following state- space equations                         x = Ax + u  B                          y Cx    =  where           0 1 0 =          A      1 1 , B  =  1 , c = [ 1 0 ]  Design a controller/observer compensator by placing controller poles at s  =  3, 4
 5.  Consider the undamped harmonic oscillator               x 1 = x 2  2               x 2 = −ω 0 x 1 + u  a)  Using the observation of velocity, y = x 2, design an observer/state feedback compensator to control the position x 1 . Place the state-feedback controller poles at s  =  −ω 0 ± j ω 0 and both observer poles at s  =  −ω 0 . b)  Write the state-space equations for the full state observer and draw  also its block diagram. c)   Assuming that the state x 1 can be measured, derive the state-space  equations for a reduced order observer (from first principles) to  estimate the state x 2 . Draw also the block diagram of the reduced  order observer.   
Control Engineering CE447 Tutorial 12 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia   Tutorial Solutions  Question 1:  
3
The desired closed-loop characteristic polynomial                 α( s ) = ( s + 2 ) ( s + 1 j ) ( s + 1 j )    = ( s + 2 ) s 2 + 2 s + 2 = s 3 + 4 s 2 + 6 s + 4                  + s 0 0 0.02 1.4 9.3 9.8        sI A bk  = 0 s 0 − − 0.01 0.4 0 + 6.3 [ k 1 k 2 k 3 ]   0 0 s    0 1.0 0  0   s 0.02 1.4 9.8 9.8 k 1 9.8 k 2 9.8 k 3  = + 0.01 s + 0.4 0 + 6.3 k 1 6.3 k 2 6.3 k 3   0 1.0 s 0 0 0   where k = [ 0.0628 0.4706 0.9949 ]         sI A + bk  = s 3 + 4 s 2 + 6 s + 4 (verify this matrix using matlab).   Question 2:                                    x = Ax + Bu    where  0 1 0   0 =                        A      0 0 1 , B  =  0  2 4 6 1  
Control Engineering CE447 Tutorial 12 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia   Note A , b is controllable. Pole placement is possible. Desired closed-loop system poles = 2 ± j 4, 6.     The desired characteristic equation for the closed loop is             α( s ) = ( s + 2 + j 4 ) ( s + 2 j 4 ) ( s + 6 )                        = s 2 + 4 s + 20 ( s + 6 ) = s 3 + 10 s 2 + 44 s + 120   Let the desired feedback gain matrix                                   k =  [ k 1 k 2 k 3 ]    The closed-loop characteristic polynomial is given by  s 0 0   0 1 0 0 0 0 s 2 4 6 1 k k k          sI A + bk  = 0 s 0 0 0 1 + 0 [ 1 2 3 ]        = 2 0 sk 1 4 + s 1 k 2 s + 6 01 + 3   + k          sI A + bk  = s 3 +( 6 + k 3 ) s 2 +( 4 + k 2 ) s +( 2 + k 1 )         Equating sI A + bk  = α( s )   we get   6 + k 3 = 10, 4 + k 2 = 44 and 2 + k 1 = 120  
4
Control Engineering CE447 Tutorial 12 5 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia    Solving we get        k 1 =4, k 2 =40, k 3 =118  =       k  [ 4 40 118 ]   Question 3:  ccA 1 0 0               = cA 2  = 001001        Since rank [ ] = 3, c , A is observable, Therefore full state observer design is possible. The desired characteristic polynomial of the observer                    α( s ) = ( s + 2 j 3.464 ) ( s + 2 + j 3.464 ) ( s + 5 )    = s 3 + 9 s 2 + 36 s + 80 (1)  The characteristic polynomial of the observer  s     l sI A LC s 0 1 + l 1 0 0         − +  = 0000 s 00     600     1 11  60 l 321 [ ]     s + l 1 1 0   1    = l 2  s l 3 + 6 11 s + 6         sI A + LC  = s 3 +( l 1 + 6 ) s 2 +( 6 l 1 + l 2 + 11 ) s +( 11 l 1 + 6 l 2 + l 3 + 6 )  (2)
Control Engineering CE447 Tutorial 12 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia    Equating (1) and (2) we have                   l 1 + 6 = 9  l 1 = 3   6 l 1 + l 2 + 11 = 36  l 2 = 7   11 l 1 + 6 l 2 + l 3 + 6 = 80  l 3 = -1                          L =     37  1  Question 4:       The desired characteristic polynomial          α c ( s ) = ( s + 2 ) ( s + 3 ) = s 2 + 5 s + 6 (1)            sI A + bk  = s 0 s 0  01  11 + 10  [ k 1 k 2 ]      − −        s 1                                      =  1 + k 1 s + 1 + k 2            sI A bk  = s 2 +( 1 + k 2 ) s +( 1 + k 1 )  (2) − +   Equating (1) and (2) we have                1 + k 2  = 5  k 2 = 3  
6
Control Engineering CE447 Tutorial 12 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia    1 + k 1 = 6  k 1 = 5                                      K = [ 5 4 ]           Observer design.                α o ( s ) = ( s + 3 ) ( s + 4 ) = s 2 + 7 s + 12 (1)            sI A + LC  = 0 s 0 s   10  11 + ll 21  [ 1 0 ]      s + l 1 1                                     = 1 + l 2 s + 1           sI A + LC  = s 2 +( 1 + l 1 ) s +( 1 + l 1 + l 2 )  (2)   Equating (1) and (2) we have  =  1 + l 1  7  l 1 = 3  1 + l 1 + l 2                     l 2 = 5  6                           L = 5          Alternate solution                     x = Ax + Bu , y = cx           = 0 1 , =  0 , = [ 1 ] A 1 1 B 1 c 0
7
Control Engineering CE447 Tutorial 12 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia               = [ B AB ]  = 10 11   rank [ ] = 2.   A , b is controllable.
                     = ccA = 0110       rank [ ] = 2.   c , A is observable.    Open-loop characteristic polynomial              ( )  = s 1   a s = sI A  1 s + 1                           2 2    = s + s + 1 = s + a 1 s + a 2                         a 1 = 1, a 2 = 1       Controller design: determination of Gain k    =               W  01 a 1 1  = 1 1  0 1   The desired controller polynomial                 α( s ) = ( s + 2 ) ( s + 3 )  = s 2 + 5 s + 6  2 =                             s 1 s 2   
8
Control Engineering CE447 Tutorial 12 Prepared by A/Prof Victor Sreeram School of Electronic and Computer Engineering University of Western Australia                         α 1 = 5, α 2 = 6       Using Bass Guras formula           K = 1 a 1 )(α 2 a 2 )  W 1 e 1                − −                  ( 5 1 ) ( 6 1 )  1 1 1 0 1 1  = 0 1 1 1                           = [ 4 5 ]  01  11  1101                 = [ 4 1 ]  1101  = [ 5 4 ]    The desired observer polynomial           α( s ) = ( s + 3 ) ( s + 4 )  = s 2 + 7 s + 12   = s 2 1 s 2                    α 1 = 7, α 2 = 12   Using Bass Guras formula        1 1 1               l = ( W ) ααa 2 a 2                = a 1 1 10  ccA 1 (( 172 11 ))  = a 1 1 10  ccA 1 161   
9
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents