Self assembled materials for solar cell application [Elektronische Ressource] / Maria Carmen Lechmann-Dorn
112 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Self assembled materials for solar cell application [Elektronische Ressource] / Maria Carmen Lechmann-Dorn

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
112 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Self Assembled Materials for Solar Cell Applica tion Dissertation Zur Erlangung des Grades „Doktor der Naturwissenschaften” Im Promotionsfach physikalische Chemie Maria Carmen Lechmann-Dorn Geb. am 13.12.1981 in Aachen Mainz, 2010 Die vorliegende Arbeit wurde am Institut füra lPihyscsihek Chemie der Johannes-Gutenberg Universität Mainz, am Max-Planck-Institut für Polymerforschung in Mainz und der Soul National University in Korea in der Zeit von März 2007 bis Februar 2010 angiegft.e rt Abgabedatum: 3.2.2010 Pfürungstermin: 13.4.2010 Abstract: In der vorliegenden Arbeit wurden Materialienu fubnadu tAen für Hybrid Solarzellen entwickelt und erforscht. Der Vergleich zweier bekannter Lochleitermaterina lfieür Solarzellen in einfachen Blend-Systemen brachte sowohl Einsicht zur unterschiedlichen Eignngu der Materialien für optoelektronische Bauelemente als auch neue Erkenntnisse in Bereic hdener Langzeitstabilität und Luftempfindlichkeit beider Materialien. Weiterhin wurde eine Methode entwickelt, um HybrSiodl arzelle auf möglichst unkomplizierte Weise aus kostengünstigen Materialien darzustellen. EiDniteo p„f“-Synthese ermöglicht die unkomplizierte Darstellung eines funktionalen Hybridmaterialdsi ef üorp toelektronische Anwendung.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 28
Langue Deutsch
Poids de l'ouvrage 14 Mo

Extrait



Self Assembled Materials for
Solar Cell Applica tion

Dissertation
Zur Erlangung des Grades
„Doktor der Naturwissenschaften”
Im Promotionsfach physikalische Chemie





Maria Carmen Lechmann-Dorn
Geb. am 13.12.1981 in Aachen
Mainz, 2010








Die vorliegende Arbeit wurde am Institut füra lPihyscsihek Chemie der
Johannes-Gutenberg Universität Mainz, am Max-Planck-Institut für Polymerforschung in Mainz und
der Soul National University in Korea
in der Zeit von März 2007 bis Februar 2010 angiegft.e rt
















Abgabedatum: 3.2.2010
Pfürungstermin: 13.4.2010


Abstract:
In der vorliegenden Arbeit wurden Materialienu fubnadu tAen für Hybrid Solarzellen entwickelt und
erforscht.
Der Vergleich zweier bekannter Lochleitermaterina lfieür Solarzellen in einfachen Blend-Systemen
brachte sowohl Einsicht zur unterschiedlichen Eignngu der Materialien für optoelektronische
Bauelemente als auch neue Erkenntnisse in Bereic hdener Langzeitstabilität und Luftempfindlichkeit
beider Materialien.
Weiterhin wurde eine Methode entwickelt, um HybrSiodl arzelle auf möglichst unkomplizierte Weise
aus kostengünstigen Materialien darzustellen. EiDniteo p„f“-Synthese ermöglicht die unkomplizierte
Darstellung eines funktionalen Hybridmaterialdsi ef üorp toelektronische Anwendung. Mithilfe eines
neu entwickelten amphiphilen Blockcopolymers, dalss afunktionelles Templat eingesetzt wurde,
konnten mit einem TiO -Precursor in einem Sol-Gel Ansatz verschiedene bsetolrganisierte 2
Morphologien des Hybridmaterials erhalten werdeenr.s cVhiedene Morphologien wurden auf ihre
Eignung in Hybrid Solarzellen untersucht. Ob unrdu mw daie Morphologie des Hybridsystems die
Effizienz der Solarzelle beeinflusst, konntet lvicehrtd ewuerden. Mit der Weiterentwicklung der
„Eintopf“-Synthese, durch den Austausch des T-iPOrecursors, konnte die Solarzelleneffizienz von 2
0.15 auf 0.4 % gesteigert werden. Weiterhin kondnitee Übertragbarkeit des Systems durch den
erfolgreichen Austausch des Halbleiter s mTiti OZnO bewiesen werden. 2




Abstract:
New materials and assemblies were designed anedd t efsotr hybrid solar cell application. A simple
blending approach was used to prepare hybrid csoelalrs in a convenient, cheap and fast method.
Nano crystalline Ti Orods were blended with different hole condautcetriniagl sm and tested in solar 2
cell devices. Comparing their performance in oplhotatoicv devices, while experimental conditions are
kept identical, showed that the choice of solvnedn t pahotovoltaic characterization conducted in
inert atmosphere is of different influencee rfeonrt dhoilfef conducting materials. External infsl uence
as long term stability were investigated.
In comparison to the blend approach a new one-poppt roaach was invented to prepare a
nanostructured, multi-functional material with oogrothnal properties. It consists of aTsi O a 2
functional metal oxide and a new amphiphilic cbolpoclk-ymer poly(ethyleneoxidbe-)-
poly(triphenylamine) (PEOb--PTPA) that was synthesized. The hybrid material sw oabtained within a
single step via self assembly in solution. eT hear emfeothrod had to be found to obtain crystalline
TiO under mild conditions. Within the materials synitsh etshe block-copolymer not only acts as a 2
templating agent but also adds an electronico nfaulnitcyt ito the resulting hybrid material. Durein g th
synthesis a variety of self assembled morpholroagnigeisn g from spheres to wires were created in a
controlled fashion. The obtained morphology de peond sthe weight fraction of the polymer,
solvent, TiO precursor and acid. Studying films on silicrosn wwitahf secanning electron microscopy 2
(SEM) and transmission electron microscopy (TEM) tae rnary phase diagram could be mapped
whereas the crystallinity of TciOould be proved by high resolution-TEM. Diffmeorepnhotl ogies of 2
this self assembled hybrid material were test esdo lfaor rcell application. Even for devices rw ith laye
thicknesses of the active material below 10 nm pro wcoenversion efficiencies up to 0.15 % at 1 sun
and 1.5 AM were observed. The solar cell ef fwiacsi eincyreased with further development of the
one-pot approach by changing the precursor. A pothlyyleneglycole modified titanate was used as
precursor in combination with the functional blcocpko lymer PEO- b-PTPA. Again self-assembled
network morphologies were obtained and tested ilna rs ocell devicWehsi.l e the formation of
percolating networks is of general importance otlhear scell performance was found to
depend on the morphological design of the hybritde rimaal. With the aid of conductive
scanning force microscopy, it was proven to pre sear vpercolating network despite an
increase of the active layer thickness. In comibonin awt ith a special functionalized Ti-
precursor hybrid bulk heterojunction solar celvlisn gh aa maximum power conversion
efficiency of 0.4 % at 1 sun and 1.5 AM were do.b tain

초초:

혼혼 태 태태태 응 응응 도도도도 위위 새 새새 물물물 자자자 자자 고고 도고 적 응도적 적. 혼 혼
태태태태 태 제제제 쉽고 싸싸 빠빠빠 준준 준 수 있있 간간위 블블 블 방방 자 사 응도적 적. 나 나
결결물결 TiO 막막 막 적 태위 결정 태도 물물자 블 블블도고 태 태태태 디 디 디디태 테디 테도적 적. 2
광태태 디디디디 혼성 자 준비도 도 위도 고 적 다 실실자 실자 동 동도빠 유태도적 고, 응 용용
선선제 고결위 환환 응환 광태태 특혼 자 측 결준 때응 적 다 결 정 태 도물 물응환 적다 영영 자
보적적. 또 위 외 외환환 응 용위 긴 시간 고결혼 도 살 살보살적.
단단위 블 블블 방방물 달달, 새 새새 one-pot 방 방자 통통 나나 구자태 자태싸 수 수 혼 물 자
준비위 고여 도성 자 자 태 있 물물 자 만만 수 있있 적. 디있 금 금금금물 결 TiO 막 새 새빠 합혼위 2
태양혼 블초 정공합 공결 폴 달응폴 블폴사 디블-b- 폴달테 폴디폴 폴폴 폴 (PEO- b-PTPA) 자
사응도적 적. 응 용 금응 환 자 자 자자도 있 특 혼 자 디 응도고 위 단단 새 혼혼물물 자 만만있 적.
따폴환 온실위 자 실응환 TiO 결결 자 만 블있 방 방자 고 고통고 했 적. 물 물자 합 혼도있 동 고 2
블초정공 합공있 템 템템 디테 역준 뿐만 디 폴아 폴 혼 혼물물 응 태도적 혼물디 띄도 초 도있
역준자 통준 적. 합혼 자실응 따폴 환 구구 응 환외구 막디 와 모태 모 태 적태위 자 자자자
몰폴새태 새 제와 준 수 있적. 즉, 고 고자용 태 디 나 응용, TiO 태구공, 금 자 통도고 몰폴새 태태 2
자조준 수 있적. 실달실 웨디웨응 코코 위 샘템 자 주사태자 주주환 (SEM) 디 나 투물 태자주 주환
(TEM) 자 디 응통 삼삼 삼 디주 태새 얻자 수 있있 고, TiO 결결제 고 통고 도 TEM 자 디 응도고 2
확결도적 적. 자자 자자 혼 혼 물물 용 적 태위 몰폴새 태있 태 태태태 응응 자 위 통 테디 테위 결물, 1
sun, 1.5 AM 자실응 환 10 nm 디 도용 활 혼활 두두응 환도 디 디디디 있 0.15 % 효효자 보적적. One-
pot 방방응 환 태 구공 태 디바 와자싸 개선 위 결물 태태 태태 효효 제 더 증자 도적적.
폴달응폴 블폴폴 디폴새 개물시개 titanate 태 도 성적결 블 초 정공합 공 PEO-b-PTPA 막 함두
태구공새 디 응도고 자 자 자자 네테네 네 몰폴새 태 태 얻 제 후, 태태 태태특 혼 측결자 도 적적.
태태태태 혼성응 환 동 일적일새 공중도 적고 보있 연결 연 네테 네네 용 구혼디 혼혼물 물용
몰폴새태 디 자결응 따 폴 적빠적있 것 자 발발도 적 적. 활혼 활용 두두 태 증자 시시 더폴도 연 결연
네테네네 있 고 태여 존 존 위적있 것자 태 도혼 주 사 힘 주 주환디 응도고 알폴알있 적. 특특 위
도성도새 처 달위 타 디타 타 태구공태 디응도 고 제 제위 혼혼 벌 네 헤테새 결 정 태태태태 새 1 sun,
1.5 AM 자 실응환 최고 0.4 % 효효 자 얻 자 수 있있 적.



CONTENT

Abreviation ........................................................................ .i......................
1 Motivation ................................................................................................................. ...................... 1
2 Introduction .................................................................. .................... 3
2.1 Organic Photovoltaics ........................................................ ............. 3
2.1.1 Concept of Organic and Hybrid Photovoltaic ............................................ .... .3.................
2.1.2 Efficiency ............................................................ ............. 5
2.1.3 Types of Organic Photovoltaics ........................................... ....... .6........
2.2 Self assembled Systems In Photovoltaics ...................................... ...... .11........
2.3 Self-Assembled Systems .................................................................................... .................... 12
2.3. 1 Phase Diagrams of Block Copolymers - Bulk ................................ .12...................
2.3. 2 Phase Transition of Surfactant Systems - Emulsio.n. .......................... .1 3......................
2.4 Templated Hybrid Materials via Self-Assembl.y. ............................................... ....... .15............
2.4. 1 Sol Gel Templating Systems .............................................. ..... .16.........
2.4. 2 Integrated Functional Templates ........................................ .... .19............
3 Experimentals .................................................................. ................. 25
3.1 Chemicals - Materials ....................................................... ........... 25
3.2 Synthesis .................................................................. ............... 25
3.3 Sample and Device Preparation .............................................. ........ .2.6...
3.3.1 Morphology Preparation ........................................................................... ........... .2.6.......
3.3.2 Solar Cell Device Fabrication ........................................... ...... .2.8......
3.4 Measurements .............................................................. ........... 29
3.4.1 Cyclovoltametry - CV ................................................................................. ............... .2.9...
3.4.2 Scanning Electron Microscopy - SEM ........................................ .. .2.9..............
3.4.3 Transmission Electron Microscopy - TEM ..................................

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents